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13 Abstract

14 The Oresund (the Sound), which is a part of the Danish straits, is linking the marine North Sea
15  and the brackish Baltic Sea. It is a transition zone where ecosystems are subjected to large

16  gradients in terms of salinity, temperature, carbonate chemistry, and dissolved oxygen

17  concentration. In addition to the highly variable environmental conditions, the area is responding
18  to anthropogenic disturbances in e.g. nutrient loading, temperature, and pH. We have

19  reconstructed environmental changes in the Oresund during the last ¢. 200 years, and especially
20 dissolved oxygen concentration, salinity, organic matter content, and pollution levels, using

21 benthic foraminifera and sediment geochemistry. Five zones with characteristic foraminiferal

22 assemblages were identified, each reflecting the environmental conditions for respective period.
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23 The largest changes occurred ~1950, when the foraminiferal assemblage shifted from a low

24  diversity fauna, dominated by the species Stainforthia fusiformis to higher diversity and

25  abundance, and dominance of the Elphidium group. Concurrently, the grain-size distribution

26  shifted from clayey — to more sandy sediment. To explore the causes for the environmental

27  changes, we used time-series of reconstructed wind conditions coupled with large-scale climate
28  variations as recorded by the NAO index, as well as the ECOSMO II model of currents in the
29 Oresund area. The results indicate increased changes in the water circulation towards stronger
30 currents in the area since the 1950’s. The foraminiferal fauna responded quickly (< 10 years) to
31 the environmental changes. Notably, when the wind conditions, and thereby the current system,
32 returned in the 1980°s to the previous pattern, the foraminiferal species assemblage did not

33 rebound, but the foraminiferal faunas rather displayed a new equilibrium state.
34 1 —Introduction

35  The Oresund (the Sound) is one part of the Danish straits between Sweden and Denmark.

36 Together with the Great — and Little Belt, they link the open-ocean waters of the North Sea and
37  the brackish waters of the Baltic Sea. The confluence of the water masses creates a north-south
38 gradient as well as a strong vertical stratification of the water in terms of salinity, carbonate

39  chemistry and dissolved oxygen concentration ([O;]) (Lepparanta and Myrberg 2009). The depth
40  of the halocline mainly depends of the outflows from the Baltic Sea; a strong thermocline

41 develops during spring and summer, which further strengthens the vertical stratification. Thus,
42 the ecosystems in the Oresund are exposed — and adapted — to a unique transitional

43 environment. The region is also characterized by intense human activities, with 4 million people
44 living in the vicinity of the Oresund and 85 million people living in the catchment area of the

45  Baltic Sea. Discharge from agriculture, industry, and urban areas on both the Swedish and
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Danish sides of the strait, and the considerable impact of marine traffic — the strait is one of the
busiest waterways in the world — generate pollution and eutrophication of the water (HELCOM
2009; ICES 2010). Since the 1980’s, the implementation of efficient wastewater treatment and
measures in agriculture contributed to markedly reduce the amount of nutrients coming from
river run-off (Nausch et al. 1999; Carstensen et al. 2006; Rydberg et al. 2006). However, these
efforts in decreasing nutrient loads have not resulted in improved water quality, due to the long
time scales of biogeochemical cycles to reach equilibrium in the Baltic Sea region (Gustafsson et
al. 2012). The Oresund, like most of the Baltic Sea, is still assessed to be eutrophic, and hypoxic
events are frequent (Rosenberg et al. 1996; Conley et al. 2007, 2011; HELCOM 2009;
Wesslander et al. 2016). Moreover, increasing temperatures and declining pH, linked to global
climate change and ocean acidification, have been reported for surface and bottom waters in the
area (Andersson et al. 2008; Goransson 2017). As a result, ecosystems in the Oresund are
currently under the combined impact of natural and anthropogenic stressors (Henriksson 1969;
Goransson et al. 2002; HELCOM 2009; ICES 2010). The multiple stressors currently affecting
the environment make this region particularly interesting to study, and also highlight the need to
obtain records of decadal and centennial environmental changes. As noted above, both recent
human-induced impacts and climate variability have been substantial in the region. Therefore the
question arises whether these factors have affected the benthic environment. Furthermore,
sediment records of past environmental changes can provide crucial context for ongoing and

future predicted changes in the Oresund and Baltic Sea regions.

We used the marine sediment record and its contents of foraminifera as well as sediment
geochemistry to obtain records of decadal environmental changes. Benthic foraminifera are

widely used for environmental reconstructions, based on their rapid response to environmental
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changes, broad distribution, high densities, and often well-preserved tests (shells) in the sediment
(e.g. Sen Gupta 1999). For instance, distribution of benthic foraminifera have been used for
historical environmental reconstructions of fjords on decadal to centennial timescales on the
Swedish west coast (Nordberg et al. 2000; Filipsson and Nordberg 2004a, 2004b; Polovodova
Asteman and Nordberg 2013; Polovodova Asteman et al. 2015), and in the Kattegat
(Seidenkrantz 1993; Christiansen et al. 1996). In the Oresund, living foraminiferal assemblages
have been studied (Hansen 1965; Charrieau et al. 2018), but to the best of our knowledge, no
studies of past foraminiferal assemblages have been performed. In this study, we used
foraminiferal fauna analysis in combination with sediment geochemistry and grain-size analyses
to reconstruct the environmental conditions of benthic systems during the last two centuries in
the Oresund. Furthermore, we analyzed long time series of wind conditions in the area to
evaluate the coupling between local changes in ecosystem variables and variations in
atmospheric and subsequent hydrographic conditions, and a possible link with large-scale
variations expressed through the North Atlantic Oscillation (NAO) index. Finally, we compared
our data with the model ECOSMO II (Daewel and Schrum 2013; 2017) of currents and water

circulation changes in the Oresund area during the period 1948—2013.

2 — Study site

The Oresund is a 118 km long narrow strait (Figure 1). The water depth in the northern part is on
average 24 m but it reaches 53 m south of the Island of Ven. The Oresund is an important link
between the North Sea, Skagerrak, Kattegat and the Baltic Sea (Figure 1), and up to 30 % of the
water exchange in the region goes through the Oresund (Sayin and KrauB3 1996; Leppiranta and
Myrberg 2009); the remaining part goes through the Great and Little Belt. The width of the

Oresund varies between 4 and 28 km, and the water has overall high current velocities, up to 1.5
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m.s™' at the upper water layer in the northern part (Nielsen 2001). The fully marine Skagerrak
consists of water masses from the North Sea and the North Atlantic and in general a thin surface
layer with water originating from the Baltic Sea and rivers draining into the sea; the water
circulation forms a cyclonic gyre (cf. Erbs-Hansen et al. 2012). Part of the Skagerrak waters
reach the Kattegat and the Baltic Sea, where they are successively diluted with the large amounts
of freshwater (around 15,000 m*/s, Bergstrom and Carlsson 1994) draining into the Baltic Sea
from numerous large rivers. The low-saline Baltic Sea surface water is transported by the Baltic
Current, which is typically confined along the Swedish west coast in the Kattegat but may cover
a larger surface area towards the west, depending on wind direction. The Baltic Current later
joins the Norwegian Coastal Current in the Skagerrak (Figure 1). The large fresh water input and
the subsequent large salinity difference between the Kattegat and Baltic Sea result in a two-layer
structure in the Oresund (Figure 2) (She et al. 2007; Leppéranta and Myrberg 2009). The water
stratification is influenced by the surface water from Arkona Basin (salinity 7.5—38.5), the
surface water from the Kattegat upper layer (salinity 18—26) and the lower layer of the Kattegat

(salinity 32—34).

Salinity, temperature, pH, [O,] and nutrient content, here represented by dissolved inorganic
nitrogen concentration [DIN] (nitrate + nitrite + ammonium), in the surface and bottom waters of
the Oresund vary seasonally (Figure 3, Appendix A). In the surface and bottom water, salinity
ranges between ~8 and ~18 and between ~29 and ~34, respectively, and it is more stable between
April and July, when the stratification is the strongest (Figure 3). Temperature ranges between

~1 °C in February and ~19 °C in July in the surface water, while in the bottom water, the lowest
temperature is found in March—April with ~5° C, and the highest temperature in October—

November with ~13 °C. The pH varies between ~8.1 and ~8.6 in the surface water, and between
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~7.8 and ~8.6 in the bottom water, without a clear seasonal pattern (Figure 3). [Oz] in the bottom
water reaches ~7 mL.L™" in January, and it is typically below 2 mL.L™" in October, approaching
hypoxic values. In the surface water, [DIN] can reach ~7 pmol.L™" in January, and it is ~0

pmol.L™" between April and August (Figure 3).

3 - Materials and Methods

3.1 Sampling

A suite of sediment cores, as well as water samples from the water column, were collected in
November 2013 during a cruise with r/v Skagerak. Here we present the data from two sediment
cores sampled at the Oresund station DV-1 (55°55.59’ N, 12°42.66° E) (Figure 1), north of the
Island of Ven. The water depth was 45 m, and CTD casts were taken to measure salinity,
temperature and [O;] in the water column. Water samples were collected at 10, 15, 20, 30 and 43
m from the Niskin bottles for carbonate chemistry analyses. The CTD and carbonate chemistry
data are presented in Charrieau et al. (2018). The salinity profile in the water column showed the
typical halocline at 10 m depth (Figure 2). The temperature and [O;] decreased with depth. The
pH values decreased with depth and increase again when reaching the bottom water (Figure 2).
In general, it is challenging to obtain sediment cores in the Oresund, due the high current
velocities up to 1.5 m.s™ (Nielsen 2001), human-induced disturbances, and limited areas of
recent sediment deposition (Lumborg 2005), but our site north of Ven represents an
accumulation area. The cores (9-cm-inner-diameter) were collected using a GEMAX twin barrel
corer. The corer allowed sampling of 30 and 36 cm long sediment cores (referred in this study as
core DV1-G and DV1-I, respectively), which were sliced into one centimeter sections. The

samples from the DV1-G core were analyzed for carbon and nitrogen content, grain size
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distribution, and dated using Gamma spectroscopy. The samples from the DV1-I core were
analyzed with respect to foraminiferal fauna and carbon and nitrogen content. The distinct
carbon content profiles, measured on both cores, were used to correlate the 210pp dated DV1-G

core to the DV1-I core used for foraminiferal analyses.
3.2 Chronology

The age-depth model was established using *'°Pb and '*’Cs techniques on samples from the
DV1-G core. The samples were measured with an ORTEC HPGe (High-Purity Germanium)
Gamma Detector at the Department of Geology at Lund University, Sweden. Corrections for
self-absorption were made for *'°Pb following Cutshall et al. (1983). The instruments were
calibrated against in-house standards and the maximum error was 0.5 year in the measurements.
Excess (unsupported) 219 was measured down to 23 cm and the age model was calculated

based on the Constant Rate of '°Pb Supply (CRS) model (Appleby 2001).
3.3 Foraminifera analyses

The foraminiferal samples were prepared following standard micropalacontological techniques
(e.g. Murray 2006). Approximately 10 g of freeze-dried sediment per sample were wet sieved
thought a 63-um mesh screen and dried on filter paper at room temperature. Subsequently, the
samples were dried sieved through 100- and 500-um mesh screens and separated into the
fractions 100-500 um and >500 pm. The foraminifera from every second centimeter of the core -
plus from additional centimeters around key zones - were picked and sorted under a Nikon
microscope. A minimum of 300 specimens per sample were picked and identified, if necessary
the samples were split with an Otto splitter (Otto 1933). For taxonomy at the genus level, we

mainly followed Loeblich and Tappan (1964) with some updates from more recent literature, e.g.
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Tappan and Loeblich (1988). For taxonomy at the species level, we mainly used Feyling-
Hanssen (1964), Feyling-Hanssen et al. (1971) and Murray and Alve (2011). For original

descriptions of the species, see Ellis and Messina (1940 and supplements up to 2013).

Recently, the eastern Pacific morphospecies Nonionella stella has been presented as an invasive
species in the Skagerrak-Kattegat region (Polovodova Asteman and Schonfeld 2015). However,
a comparison of N. stella DNA sequences from the Santa Barbara Basin (USA) (Bernhard et al.
1997) with the Swedish west coast specimens demonstrates that they represent two closely
related species but are not conspecific (Deldicq et al. in press). Therefore, we have referred to the
species found here as Nonionella sp. T1, following Deldicq et al. (in press). The species
Verneuilina media (here referred to the genus Eggerelloides), which has often been reported in
previous studies from the Skagerrak-Kattegat area (e.g. Conradsen et al. 1994), was
morphologically close to Eggerelloides scabrus in the present material, and these two species
have been grouped as E. medius/scabrus. The taxon Elphidium excavatum forma clavata (cf.
Feyling-Hanssen 1972), was referred to as Elphidium clavatum following Darling et al. (2016).
Elphidium clavatum and Elphidium selseyense (Heron-Allen and Earland) were morphologically
difficult to separate in this region, as transitional forms occur. The dominant species was E.
clavatum, but we acknowledge that a few individuals of E. selseyense could have been included
in the counts. The taxon Ammonia beccarii was referred to as Ammonia batava, following recent
molecular work done on the taxon Ammonia in the Kattegat region (Groeneveld et al., 2018; Bird

et al. in press).

Foraminiferal density was calculated and normalized to the number of specimens per 50 cm’.
Data of densities of living + dead foraminifera for the first two centimeters of the core are from

Charrieau et al. (2018). Some specimens displayed decalcified tests, however the inner organic
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linings were preserved. These inner organic linings were reported separately and not included in
the total foraminiferal counts. Benthic foraminiferal accumulation rates were calculated as

follows:
BFAR (number of specimens.cm'z.yr’l) = BF x SAR,

where BF is the number of benthic foraminifera per cm® and SAR is the sediment accumulation
rate (cm.yr). Foraminiferal species that accounted for >5 % of the total fauna in at least one of
the samples were considered as major species, and their density was used in statistical analysis.
To determine foraminiferal zones, stratigraphically constrained cluster analysis was performed,
using the size-independent Morisita’s index to account for the large differences in the densities
between samples. A dendrogram was then constructed based on arithmetic averages with the
UPGMA method (Unweighted Pair Group Method with Arithmetic Mean). Correspondence
analysis was also performed, to determine significant foraminiferal species in each zone.

Statistical analyses were performed using the PAST software (Hammer et al. 2001).
3.4 Organic matter analyses

Total Organic Carbon (TOC) and Total Nitrogen (TN) content were measured for both DV1-G
and DV1-1. Approximately 8 mg of freeze-dried sediment was homogenized for each centimeter
and placed in silver capsules. Removal of inorganic carbon was carried out by in-situ
acidification (2M HCI) method based on Brodie et al. (2011). TOC and TN content were
analyzed on a Costech ECS 4010 Elemental Analyzer at the Department of Geology, Lund
University. The instrument was calibrated against in-house standards. The analytical precisions
showed a reproducibility of 0.2 % and 0.03 % for TOC and TN contents, respectively. The molar

C/N ratio was calculated.
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204 3.5 Grain-size analyses

205  Qrain-size analyses were performed on core DV1-G using 3.5 to 5 g of freeze-dried sediment for
206  each centimeter. Organic matter was removed by adding 15 mL of 30 % H,0O; and heating

207  during 3 to 4 minutes until the reaction ceased. After the samples had cooled down, 10 mL of
208 10 % HCI was added to remove carbonates; thereafter the sediment was washed with milli-Q
209 until its pH was neutral. In the last step, biogenic silica was removed by boiling the sediment in
210 100 mL 8 % NaOH, and then washed until neutral pH was reached. The sand fraction (>63 pum)
211  was separated by sieving and the mass fraction of sand of each sample was calculated. Grain

212 sizes <63 um were analyzed by laser diffraction using a Sedigraph III Particle Size Analyzer at
213 the Department of Geology, Lund University. The data were categorized into three size groups,

214 <4 pm (clay), 4-63 pm (silt) and 63-2000 pm (sand).
215 3.6 Climate data and numerical modeling

216  Data from the dataset High Resolution Atmospheric Forcing Fields (HiResAFF) covering the
217  time period 18502008 (Schenk and Zorita 2012; Schenk 2015) were used to study the variations
218  of near-surface (10 m) wind conditions during the winter half of the year (October to March).
219  The daily dataset can be downloaded from WDC Climate (Schenk 2017). Wind conditions over
220  the Oresund are represented by the closest grid point of HiResAFF at 55° N and 12.5° E. The
221 NAO index as defined by Jones et al. (1997) for boreal winter (December to March) was used,
222 with updates taken from the Climate Research Unit (CRU,

223 https://crudata.uea.ac.uk/cru/data/nao/). To allow comparison, the NAO and wind data were

224  normalized relative to the period 1850-2008. Changes in the currents through the Oresund and

225  the Kattegat were taken from the fully coupled physical biogeochemical model ECOSMO 11

10
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(Daewel and Schrum 2013, 2017), which was forced by NCEP/NCAR reanalysis data and covers
the period 1950-2013. On model ECOSMO 11, the simulated South-North currents are
represented as VAV (vertically averaged V- component) and the simulated West-East currents as

UAYV (vertically averaged U - component).
4 — Results
4.1 Age model

The unsupported *'°Pb showed a decreasing trend with depth in the DV1-G core (Figures 4A,
4B). The peak observed in the '*’Cs around 9 ¢m corresponds to the Chernobyl accident in 1986
(Figure 4C). The unsupported *'°Pb allowed direct dating of the core between 2013 and 1913.
The sedimentation rate ranged between 1 and 5.6 mm.y™', with an average of 2.2 mm.y™', and
was decreased with depth. The ages of the lower part of the sediment record were deduced by
linear extrapolation based on a sedimentation rate of 1.4 mm.y™', corresponding to the linear

mean sedimentation rate between the years 1913 and 1946 (Figure 4D).
4.2 Foraminiferal assemblages and sediment features

The foraminiferal assemblages were composed of 76 species from the porcelaneous, hyalines
and agglutinated forms (Appendix B). Eleven foraminiferal species had relative abundance

higher than 5 % in at least one sample and were considered as major species (Plate 1, Figure 5).

The cluster analysis reveals three main foraminiferal zones (FOR-A, FOR-B, and FOR-C),
separated into five subzones to which we assigned dates according to the age model: FOR-A1
(1807-1870), FOR-A2 (1870-1953), FOR-B1 (1953—-1998), FOR-B2 (1998-2009), and FOR-C

(2009-2013) (Figures 5, 6). The correspondence analysis resulted in three factors explaining

11
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92 % of the variance, and in assemblages consisting in seven significant species, presented in
order of contribution: Nonionella sp. T1, Nonionoides turgida, Ammonia batava, Stainforthia

fusiformis, Elphidium albiumbilicatum, E. clavatum and Elphidium magellanicum (Table 1).
421. Zone FOR-A1 (1807-1870)

The foraminiferal accumulation rate (BFAR) was on average 5 +3 specimens.cm™.y” in zone
FOR-A1 (Figure 5). The Shannon index was stable and low, around 1.77 £0.1 (Figure 5). The
agglutinated species Eggerelloides medius/scabrus and the hyaline species Stainforthia
fusiformis made major contributions to the assemblages (relative abundances up to 53 % and

34 %, respectively; Figure SA). Ammonia batava, the three Elphidium species (E.
albiumbilicatum, E. clavatum, and E. magellanicum), Nonionellina labradorica and the
agglutinated species Reophax subfusiformis were also major species with abundances up to 7 %.
The TOC and C/N values on this period were stable and were on average 3.36 % and 8.8 %,
respectively (Figure 7). The clay size fraction dominated the sediment at the end of this period

with a mean value of 63 %, and the sand content was around 7 % (Figure 7).
422. Zone FOR-A2 (1870-1953)

The BFAR was on average 9 +5 specimens.cm™.y™ in zone FOR-A2 (Figure 5). The Shannon
index was stable and low, around 1.94 £0.15 (Figure 5). Stainforthia fusiformis dominated the
assemblage with relative abundances up to 56 % and BFAR up to 608 specimens.cm'z.y'1
(Figures 5A, 5B), which is the highest BFAR observed for this species along the core.
Egerelloides medius/scabrus was still very abundant, up to 48 % (Figure 5A). Ammonia batava,
the three Elphidium species and N. labradorica were present but with lower abundances than in

the zone FOR-A1 (maximum 5 %). Bulimina marginata started to be more abundant with an

12
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average relative abundance of 2 % in the zone. Reophax subfusiformis was still a part of the
assemblage and ranged between 1 and 8 %. The TOC and C/N values were stable and were on
average 3.5 % and 8.74 %, respectively (Figure 7). The clay size fraction dominated the
sediment during this period with a mean value of 63 %, and the sand content was around 6 %

(Figure 7).
423. Zone FOR-B1 (1953-1998)

The BFAR increased massively during the zone FOR-B1 with on average 54 £31 specimens.cm’
2y and with a peak at 93 specimens.cm'z.y'1 around 1965 (Figure 5). It is lower during the
second part of the zone. The Shannon index was higher than in previous zones and it
progressively increased towards the top of the zone (Shannon index average 2.34 £0.3) (Figure
5). The highest BFAR along the core were observed for all the dominant species of the previous
zone FOR-A2, except for S. fusiformis (Figure 5B). The zone was then also characterized by a
drastic drop in the relative abundance of S. fusiformis from 31 to 2 % (Figure 5A).
Eggerrelloides medius/scabrus gradually decreased in the zone, with relative abundances from
49 to 24 %. The highest relative abundance of 4. batava for the entire record was in this zone but
it was slowly decreasing as well, from 10 to 3 %. The Elphidium group was more abundant than
in the FOR-A zones and their relative abundance was increasing, especially for E. clavatum
(increasing up to 23 %). Bulimina marginata, N. labradorica and R. subfusiformis had a relative
abundance between 2 and 6 %. A period of lower TOC values was observed during zone FOR-
B1 between 1953 and 1981, with an average of 2.38 % (Figure 7). On the same period, the sand

content showed a pronounced increase, with an average of 24 % (Figure 7).

424. Zone FOR-B2 (1998-2009)

13
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In zone FOR-B2 the BFAR was still high, on average 55 +6 specimens.cm™.y”" (Figure 5). The

Shannon index was high with an average of 2.8 +0.2 (Figure 5). The dominant species in the

zone were E. clavatum (up to 25 %) and Eggerelloides medius/scabrus (up to 15 %; Figure 5A).

The other two Elphidium species reached their highest relative abundances over the core (up to
6 %). Nonionella sp. T1, which had not occurred in the record until now, appeared in this zone
with a relative abundance of 1 %. Nonionoides turgida, which was present in very low

abundances along the core, had a mean abundance of 1 % in the zone (Figure 6A). Stainforthia

fusiformis was present with up to 9 % in relative abundance and a BFAR higher than in zone

FOR-B1 (up to 570 specimens.cm'z.y'l). Ammonia batava, B. marginata, N. labradorica, and R.

subfusiformis were present and ranged between 2 and 8 %. The TOC values were increasing,
with on average 3.05 % (Figure 7). The sediment was dominated by the clay fraction that was

increasing (mean value of 58 %), and the sand content was around 17 % (Figure 7).
425. Zone FOR-C (2009-2013)

The BFAR was lower than in previous zones FOR-B1 and FOR-B2, with on average 21 £5

specimens.cm™.y”" (Figure 5). The Shannon index was the highest during FOR-C (Shannon

index average 2.93 £0.07) (Figure 5). Nonionella sp. T1 was a dominant specie in the zone with

a strong increase in relative abundance (from 1 to 14 %) and in BFAR (from 61 to 137
specimens.cm™.y™") (Figures 5A, 5B). Elphidium clavatum and R. subfusiformis were also
dominant species with abundances up to 13%. Nonionoides turgida had its highest relative
abundance and BFAR over the core during the zone, with up to 9 % and 342 specimens.cm™.y’

respectively (Figures 5A, 5B). Eggerelloides medius/scabrus had its lowest relative abundance

1
>

over the core (up to 9 %). Bulimina marginata, the other two Elphidium species, N. labradorica

and S. fusiformis were still present (between 1 and 6 %), while Ammonia batava was absent
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during the zone. The TOC and C/N values were on average 3.71 % and 8.17 %, respectively
(Figure 7). The clay size fraction dominated the sediment with a mean value of 66 % and the

sand fraction was 7 % (Figure 7).
426. Inner organic linings

Decalcified specimens were few and ranged between 0 and 4 specimens.cm™.y 1 with an average
of 1 specimen.cm™.y™ (Fig. 5). They were observed throughout the core and especially during
zone FOR-B2, and the morphology of the remaining inner organic linings allowed the

identification of the taxon Ammonia (Plate 1).
4.3 Simulated data from model ECOSMO II

The VAV (vertically averaged South-North current velocity) through the Oresund from the
model ECOSMO II showed a reversed pattern compared to the UAV (vertically averaged West-
East current velocity) through the Kattegat (Figure 8). Thus, higher VAV through the Oresund
translates to an increase in the East to West flow in the Kattegat (lower UAV), suggesting a
stronger outflow from the Baltic Sea. The VAV through the Oresund had the lowest values
around 1955 (Figure 8), followed by a shift to very high values, which dominated throughout
1960-70. A comparable period with increased outflow from the Baltic into the Kattegat re-

occurred during the period 1993-2000.
5 — Discussion

Our environmental interpretations of the foraminiferal assemblages were based on the ecological
characteristics of each major species (Table 2). Based on our environmental reconstructions, we

could infer environmental changes regarding [O-], salinity, organic matter content, and pollution
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levels. Furthermore, we linked local environmental changes to larger atmospheric and

hydrographic conditions.

5.1. 1807 - 1870

All the major species found in this period are tolerant to low oxygen conditions, especially the
two main species: S. fusiformis and E. medius/scabrus (Table 2). Stainforthia fusiformis is an
opportunistic species used to hypoxic and potentially anoxic conditions (Alve 1994), and E.
medius/scabrus specimens have been found alive down to 10 cm in the sediment, where no
oxygen was available (Cesbron et al. 2016). Stainforthia fusiformis and N. labradorica are also
able to denitrify (Pifia-Ochoa et al. 2010). The fact that species tolerant to low oxygen conditions
dominated, and the presence of species that have the capacity to denitrify, suggest that low
oxygen conditions were prevailing during this period. Furthermore, S. fusiformis prefers organic
rich substrate and clayey sediment, which was measured in our core during this time period
(Figure 7). The low species diversity, as indicated by the low Shannon index in this section of
the core, is usually linked with low salinity (Sen Gupta 1999a). Most of the major species found
during this period, such as the Elphidium group, R. subfusiformis and A. batava tolerate lower
salinities, and are typical of brackish environments (Table 2). The low occurrence of B.
marginata, a typical marine species, also suggests a salinity lower than in the open ocean.
However, the salinity was probably not below 30, which is the lower limit for N. labradorica and
S. fusiformis, which were present throughout the period (Figure 5, Table 2). In summary, this
period appears to have been characterized by low [O], high organic matter content, and salinity

around 30.

5.2 1870 - 1953

16



https://doi.org/10.5194/bg-2019-199
Preprint. Discussion started: 12 June 2019
(© Author(s) 2019. CC BY 4.0 License.

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

374
375

376
377
378

379

Stainforthia fusiformis was largely dominating the assemblage during this period, which may
suggest even lower oxygen conditions than during the previous period. This would also go along
with the low species diversity, which is usually linked to low salinity. However, the occurrence
of the marine species B. marginata suggests that the salinity was at least 32. Low oxygen is
frequently associated with high organic matter contents, since oxygen is consumed during
remineralization of organic matter. The TOC levels observed in our core in this zone were high,
but not higher than in the previous zone (Figure 7). At the time of the industrial revolution, the
Oresund was used as a sewage recipient for a mixture of domestic and industrial wastes,
industrial cooling water and drainage water (Henriksson 1968), and the amount of marine traffic
increased considerably during this time period. This diverse type of pollution could have
modified the water properties, for example regarding the carbonate chemistry and pH. Indeed,
this zone is characterized by the presence of organic linings in the core (see also section 5.6).
Moreover, heavy metals, fuel ash (black carbon) and pesticides have been demonstrated to
generally have a negative effect on foraminiferal abundance and diversity (Yanko et al. 1999).
Pollution and low oxygen concentration could explain the low species BFAR and diversity as
well as the dissolution of tests during this period. Other species that were present, i.e. the
agglutinated species E. medius/scabrus and R. subfusiformis, are known to be tolerant to various

kind of pollution (Table 2).
5.3 1953 -1998

During this period, the large increase in the general BFAR could suggest that the specimens were
not in situ, but transported into the area. In line with this is the coarser grain size observed during
this period, indicating possible changes in the current system (Figure 7). However, the dating of
our core showed continuous sediment accumulation without any interruption during this period
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(Figure 4). Moreover, all the new dominating species were already present in the core, even if in
lower relative abundances (Figure 5A). This indicates that the BFAR increase is most likely not
due to specimens transport but rather as a result of a change in substrate and environmental
conditions that became favorable for a different foraminiferal assemblage. The higher
foraminiferal diversity compared to previous periods and the decrease in the relative abundance
of S. fusiformis may indicate more oxic conditions. Elphidium clavatum has been found in coarse
sediment in the area (Bergsten et al. 1996), and other species that tolerate sandy environments
and varying TOC dominated the assemblage, such as 4. batava, the other species in the
Elphidium group, B. marginata, and E. medius/scabrus. Furthermore, anthropogenic activities
such as agricultural practices were intensified during this period until the 1980s, which resulted
in increased nutrient loads and resulting eutrophication (i.e. Rydberg et al. 2006). The increase in
organic matter may have been beneficial for foraminifera as food source. Food webs and species
interaction like intra and inter competition might also have been modified, giving the advantage

to some species such as the Elphidium group to develop in these new environmental conditions.

The temporal coincidence with the shifts seen in the sediment record and the anomalous wind
conditions suggests a notable change of the currents through the Oresund (Figures 8, 9). The
simulated currents through the Oresund confirm such an abrupt change characterized by a shift
from very limited outflow from the Baltic to the Kattegat before ~1960 to more than a decade of
high relative outflow (high VAV) from the Oresund to the Kattegat and high current velocities
(Figure 8). While the simulation only covers the period after 1950, the analysis of wind
conditions and the NAO index suggest that the anomalies in the current and sediment pattern
from ~mid 1950°s might have been unprecedented since at least the middle of the 19™ century

(Figure 9). The shift in local sediment properties and the shift to higher BFAR and species
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diversity suggest a combination of anomalous currents during a period of unusually negative
NAO index and the abrupt first advection of anthropogenic eutrophication from the Baltic Sea
towards the Kattegat. Consistent with our findings, long-term variations in Large Volume
Changes in the Baltic Sea (LVS, Lehmann and Post 2015; Lehmann et al. 2017), which are
calculated from >29 cm (~100 km?®) daily sea-level changes at Landsort (58.74° N; 17.87° E) for
1887-2015, show an unusual cluster of both, more frequent and also larger LVCs during the
1970’s to 1980’s relative to the entire time period. Notably, this period coincides with the most
dramatic shift in foraminiferal BFAR and species diversity as well as an increase in sand content.
The period before the “regime shift” of the 1950’s to 1960’s is dominated by very infrequent and
few large LVC events. After the shift, the 1990°s show also very few or partly no LVC events

with generally record-low Major Baltic Inflow events.

Thus, during this period, the ecosystems were affected both by climatic effects through
sedimentation changes, and human impact. After ~1980, the general BFAR was lower during a
short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and
water treatments in order to reduce the nutrients discharge (Carstensen et al. 2006; Conley et al.
2007), which could have reduced the food input. Interestingly, when the sedimentation pattern
changes again and the sand content decreases markedly (Figure 7), the new species in the
foraminiferal fauna do not return to previous relative abundances as one could have expected
(Figure 5A). This suggests that once the foraminiferal fauna was established in the Oresund area

after the ~1953 shift, it created a new state of equilibrium.

5.4 1998 — 2009
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The foraminiferal assemblage in this zone was similar to the previous one, with high BFAR, high
diversity, and the Elphidium group as dominating species. This period is, however, characterized
by the appearance of two new major species: N. turgida and Nonionella sp. T1. Nonionella sp.
T1 is suggested to be an invasive species in the region which arrived by ship ballast tanks around
1985, and rapidly expanded to the Kattegat and Oresund (Polovodova Asteman and Schénfeld
2015). According to our dated core, the species arrived in the Oresund ~2000 CE (Figure 5). The
species is also present on the south coast of Norway since after 2009 (Deldicq et al., in press),
but additional genetic analyses are necessary to have a better overview of the species’ origin and
expansion. Nonionoides turgida is an opportunistic species that prefers high levels of organic
matter in the sediment, as observed in our core during this period (Figure 7). The increase in the
S. fusiformis BFAR suggest lower [O;] than in the previous zone, which was indeed a general
trend in the Danish waters during this time period (Conley et al. 2007). This period was then

characterized by low [O,], high organic matter content, and open ocean salinity.
5.52009 —2013

The ability of Nonionella sp. T1 to denitrify and its tolerance to varying environment may
explain its rapid increase during this period. The increase of N. furgida also suggests higher
levels of organic matter in the sediment. The dominance of these two species and the lower
BFAR compared to previous periods suggest low oxygen levels. This period is thus characterized

by low [O-], high organic matter content, and open ocean salinity.
5.6 Dissolution

The inner organic linings of the taxon Ammonia were observed (in low numbers, < 5 units) along

the whole core, except in the top two centimeters (Figure 5). Inner organic linings of the taxa
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Ammonia and/or Elphidium were noticed in previous studies among dead fauna in the region
(Jarke 1961; Hermelin 1987: Baltic Sea; Christiansen et al. 1996; Murray and Alve 1999:
Kattegat and Skagerrak; Filipsson and Nordberg 2004b: Kolj6 Fjord). Dissolution of calcareous
foraminiferal tests has been considered as a taphonomic process, affecting the test of the
specimens after their death (Martin 1999; Berkeley et al. 2007). However, living decalcified
foraminifera have been observed in their natural environment in the south Baltic Sea (Charrieau
et al. 2018) and the Arcachon Bay, France (Cesbron et al. 2016) and, proving that test dissolution
can also occur while the specimens live. In any case, low pH and low calcium carbonate
saturation are suggested as involved in the observed dissolution (Jarke 1961; Christiansen et al.
1996; Murray and Alve 1999; Cesbron et al. 2016; Charrieau et al. 2018). Test dissolution may
occur in all calcitic species, but only the organic linings of Ammonia were found in our study,

probably because these were more robust to physical stress such as abrasion.
6 — Conclusion

In this study, we described an environmental record from the Oresund, based on benthic
foraminifera — and geochemical data and we link the results with reconstructed wind data, NAO
index and current changes model. Five foraminiferal zones were differentiated and associated
with environmental changes in terms of salinity, [O-], and organic matter content. The main
event is a major shift in the foraminiferal assemblage ~1950, when the BFAR massively
increased and S. fusiformis stopped dominating the assemblage. This period also corresponds to
an increase in grain-size, resulting in a higher sand content. The grain-size distribution suggests
changes in the current velocities which are confirmed by simulated current velocity through the

Oresund. Human activities through increased eutrophication also influenced the foraminiferal
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fauna changes during this period. Organic linings of Ammonia were observed throughout the

core, probably linked to low pH and calcium carbonate saturation, affecting test preservation.

The long-term reconstruction of sediment — and ecosystem parameters since ~1807 suggests that
the onset of increased anthropogenic eutrophication of the eastern Kattegat started with an abrupt
shift ~1960 during a period of strongly negative NAO. With unusually calm wind conditions
during the winter half and increased easterly winds, the conditions were ideal for larger Baltic
outflow invents which then allowed more frequent and larger Baltic inflow events, as calculated
from LVC events during this period. The sediment record with unprecedented high temporal
resolution points towards the importance of considering also large Baltic outflow events to the
Kattegat which have a large impact at least at Ven Island and possibly larger parts of the
Kattegat. Because the Baltic Sea has much higher eutrophication levels and less oxygenated and
less saline waters, larger outflow events may have a significant impact also on the Kattegat.
Periods with negative NAO or conditions with intense atmospheric blocking over Scandinavia

like 2018 may also increase the influence of Baltic Sea problems on the Kattegat region.
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Figures

Figure 1. Map of the studied area. The star shows the focused station of this study. General water
circulation: main surface currents (black arrows) and main deep currents (grey arrows). GB:
Great Belt; LB: Little Belt; AW: Atlantic Water; CNSW: Central North Sea Water; JCW; Jutland

Coastal Water; NCC: Norwegian Coastal Current; BW: Baltic Water. Insert source: © BSHC.

Figure 2. CTD profiles of temperature, salinity, pH and dissolved oxygen concentration in the

water column for the DV-1 station (modified from Charrieau et al. 2018).

Figure 3. Seasonal variability of salinity, temperature, pH and dissolved inorganic nitrogen
(DIN) concentration at the surface water (light grey), and seasonal variability of salinity,
temperature, pH and dissolved oxygen concentration at the bottom water (40-50 m) (dark grey)

of the Oresund. The data were measured between 1965 and 2016 by the SMHI (Swedish
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Meteorological and Hydrological Institute) at the station W LANDSKRONA. The number of

measurements is indicated for each month.

Figure 4. Age-depth calibration for the sediment sequence from the Oresund (DV-1). A) Total
and supported 21%pp activity. B) Unsupported 210py, activity and the associated age-model. C)
13Cs activity. The peak corresponds to the Chernobyl reactor accident in 1986. D) Age-depth
model for the whole sediment sequence based on *'°Pb dates and calculated sediment

accumulation rates (SAR).

Figure 5. A) Relative abundances (%) of the foraminiferal major species (>5 %), benthic
foraminiferal accumulation rate (BFAR, specimens.cm'z.yr'l), Shannon index, organic linings
(specimens.cm™.yr™") and factors from the correspondence analysis. B) Benthic foraminiferal
accumulation rates (specimens.cm'z.yr'l) of the major species (>5%), BFAR (specimens.cm'z.yr'
", Shannon index, organic linings (specimens.cm'z.yr'l) and factors from the correspondence

analysis. Foraminiferal zones based on cluster analysis. Note the different scale on the x axes.

Figure 6. Dendrogram produced by the cluster analysis based on the Morisita index and the

UPGMA clustering method.

Figure 7. Sediment parameters of the cores DV-11 and DV-1G (210Pb dated): total organic carbon

content (Corg) (%), C/N ratio, and grain size (%). Foraminiferal zones indicated.

Figure 8. South-North flow (VAV) in the Oresund (dark line) and West-East flow (UAV) in the

Kattegat (light line) between 1950 and 2013. Foraminiferal zones indicated.

Figure 9. A) NAO index for boreal winter (December to March), data from Jones et al. (1997).

B) Variations of near-surface (10 m) wind conditions (October to March), data from Schenk and
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Zorita (2012). Both NAO index and wind speed data are normalized on the period 1850-2008
and show running decadal means. C) BFAR, percentage of sand fraction and West-East flow

(UAV) in the Kattegat. Foraminiferal zones indicated.

Plate 1. SEM pictures of the major foraminiferal species (>5%). 1. Stainforthia fusiformis; 2.
Nonionellina labradorica; 3. Nonionella sp. T1; 4. Nonionoides turgida; 5. Eggerelloides
medius/scabrus; 6. Bulimina marginata; 7. Ammonia batava; 8. Reophax subfusiformis; 9.

Elphidium magellanicum; 10. Elphidium clavatum; 11-12. Ammonia sp.

Tables

Table 1. Significant foraminiferal species and scores according to the correspondence analysis.

Table 2. Ecological significance of the benthic foraminiferal assemblages (major species).

Appendix

Appendix A. Time series of salinity, temperature and dissolved oxygen concentration at the

bottom water (40 m) of the Oresund between 1986 and 2013. The data were measured by the

SMHI (Swedish Meteorological and Hydrological Institute) at the station W LANDSKRONA.

Appendix B. Total faunas, normalized to 50 cm?
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Figure 1. Map of the studied area. The star shows the focused station of this study. General water
circulation: main surface currents (black arrows) and main deep currents (grey arrows). GB:
Great Belt; LB: Little Belt; AW: Atlantic Water; CNSW: Central North Sea Water; JCW; Jutland

Coastal Water; NCC: Norwegian Coastal Current; BW: Baltic Water. Insert source: © BSHC.
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Figure 2. CTD profiles of temperature, salinity, pH and dissolved oxygen concentration in the

water column for the DV-1 station (modified from Charrieau et al. 2018).
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794  temperature, pH and dissolved oxygen concentration at the bottom water (40-50 m) (dark grey)
795  of the Oresund. The data were measured between 1965 and 2016 by the SMHI (Swedish

796  Meteorological and Hydrological Institute) at the station W LANDSKRONA. The number of

797  measurements is indicated for each month.
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Figure 5. A) Relative abundances (%) of the foraminiferal major species (>5 %), benthic
foraminiferal accumulation rate (BFAR, specimens.cm™.yr), Shannon index, organic linings
(specimens.cm'2 yr'")and factors from the correspondence analysis. B) Benthic foraminiferal
accumulation rates (specimens.cm™.yr™") of the major species (>5%), BEAR (specimens.cm™.yr’
", Shannon index, organic linings (specimens.cm™.yr") and factors from the correspondence

analysis. Foraminiferal zones based on cluster analysis. Note the different scale on the x axes.
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Plate 1. SEM pictures of the major foraminiferal species (>5%). 1. Stainforthia fusiformis; 2.
Nonionellina labradorica; 3. Nonionella sp. T1; 4. Nonionoides turgida; 5. Eggerelloides
medius/scabrus; 6. Bulimina marginata; 7. Ammonia batava; 8. Reophax subfusiformis; 9.

Elphidium magellanicum; 10. Elphidium clavatum; 11-12. Ammonia sp.
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Table 1. Significant foraminiferal species and scores according to the correspondence analysis.

Factor Total variance (%) Significant species Score
1 48.18 Nonionella sp. T1 5.10
Nonionoides turgida 4.14

2 30.88 Ammonia batava 1.34
Stainforthia fusiformis -1.41

3 13.36 Elphidium albiumbilicatum -1.65
Elphidium clavatum -1.57

Elphidium magellanicum -1.32
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947

Table 2. Ecological significance of the benthic foraminiferal assemblages (major species).

Species

Ecological significance

Reference

Ammonia batava
Bulimina marginata

Elphidium albiumbilicatum
Elphidium clavatum

Elphidium magellanicum
Nonionella stella/aff. stella

Nonionellina labradorica
Nonionoides turgida

Stainforthia fusiformis

Eggerelloides medius/scabrus

Reophax subfusiformis

948

949

950

951

952

953

954

955

956

957

Salinity 15-35, T 0-29°C, high tolerance to varying substrate
and TOC

Tolerates low oxygen conditions, salinity 30-35, T 5-13°C,
muddy sand, prefers organic rich substrates

Salinity 16-26, typical brackish species

Tolerates low oxygen conditions, salinity 10-35, T 0-7°C, high
tolerance to varying substrate and TOC, subtidal

Coastal species

Tolerates low oxygen conditions, kleptoplastidy, able of
denitrification, invasive in the Skagerrak-Kattegat

Salinity >30, T 4-14°C, high latitudes, kleptoplastidy, able of
denitrification

Opportunistic species, tolerates low oxygen conditions, prefers
high food availability

Opportunistic species, tolerates very low oxygen conditions,
salinity >30, able of denitrification, prefers organic rich
substrates, fast reproduction cycle

High tolerance to hypoxia, salinity 20-35, T 8-14°C, sandy-
muddy sand, tolerance to various kind of pollution

Tolerance to environmental variations

Alve and Murray (1999); Murray (2006)
Conradsen (1993); Murray (2006)

Alve and Murray (1999)

Conradsen {Citation}(1993); Alve and
Murray (1999); Murray (2006)

Sen Gupta (1999)

Pina-Ochoa et al. (2010); Bernhard et al.
(2012); Charrieau et al. (2018)
Cedhagen (1991)

Van der Zwaan and Jorissen (1991)

Alve (1994); Filipsson and Nordberg
(2004); Pina-Ochoa et al. (2010)

Alve and Murray (1999); Alve (1990);

Murray (2006); Cesbron et al. (2016)
Sen Gupta (1999)
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Appendix B. Total faunas, normalized to 50 cm?

Station name DV

FOR zones FOR-C FOR-B2 FOR-B1 FOR-A2 FOR-A1
Centimeter 1 2 4 5 6 8 10 12 14 15 16 17 18 20 22 24 26 28| 30 32 34 36
Species

Biloculinella inflata 6 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cornuspira involvens 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0
Pyrgo williamsoni 1 1 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0
Quinqueloculina seminula 0 1 0 0 35 0 14 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0
Quinqueloculina stalkeri 6 0 9 0 18 0 0 0 0 0 0 0 0 0 0 0 7 14 0 0 0 0
Porcelaneous varia 13 31 111 32 0 0 0 0 34 8 46 0 0 8 0 0 0 0 7 9 0 0
Organic linings 0 of 146 159 158 60 345 132 171 238 304 332 686 575 599 807 444 260 608 316 649 159
Ammonia beccarii 0 of 292 191 308 105 159 822 1495 2167 1033 498 123 121 15 16 14 49 57 103 56 25
Ammonia falsobeccarii 57 77 69 80 35 37 111 350 854 986 516 231 85 23 15 0 0 0 0 0 0 0
Ammonia spp. 0 0 0 0 o] 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolivina pseudoplicata 0 0 9 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 0 0 0 2
Bolivina pseudopunctata 19 0 0 0 0 0] 0 0 1] 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolivina spp. 0 0 9 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bulimina marginata 132 107 506 414 282 187 166 661 1128 1224 501 534 116 68 29 16 57 7 0 0 8 6
Buliminella elegantissima 0 6 206 143 176 60 83 57 103 170 61 29 8 8 7 8 0 70 7 9 0 0
Cassidulina laevigata 44 101 300 112 35 22 0 340 376 510 228 116 15 8 7 0 0 0 0 0 0 2
Cassidulina reniforme 0o 13 17 32 0 15 14 19 68 0 15 14 0 0 0 0 0 0 0 0 0 0
Cibicides lobatulus 63 57 352 287 211 22 41 359 410 238 273 130 8 8 0 16 0 7 14 43 8 8
Elphidium albiumbilicatum 25 63| 489 143 528 225 180 454 410 238 213 217 77 53 15 31 29 127 78 77 0o 14
Elphidium clavatum 201 289 986 1833 2077 809 567 1436 2631 3331 1018 1430( 154 136 51 39 100 183 155 111 72 45
Elphidium magellanicum 63 94| 292 223 528 135 180 529 547 408 349 130 62 45 0 0 43 141 92 60 8 8
Elphidium williamsoni 19 19 86 32 18 22 14 113 68 136 61 14 0 0 0 0 7 28 21 51 16 6
Elphidium spp. 69 126 86 0 53 0 28 0 0 0 0 0 0 15 0 0 21 7 14 17 8 2
Epistominella vitrea 19 13| 309 367 299 120 166 227 103 204 30 43 23 0 7 0 7 0 0 0 0 0
Fissurina spp. 0 0 0 0 0 0 0 0 34 0 15 0 0 0 0 0 0 0 0 0 0 0
Parafissurina spp. 0 0 43 16 35 22 0 38 34 68 15 14 8 0 0 0 0 7 0 0 0 0
Fursenkoina spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0
Gavelinopsis praegeri 0 6 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0
Giroidina sp. 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0
Haynesina depressula 25 25 51 0 0 0] 0 0 0 0 0 0 0] 0 0 0 0 0] 0 17 0 0
Hyalinea balthica 0o 19 9 0 0 7 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0
Lagena laevis 0 0 0 0 0 7 0 0 0 0 15 0 0 0 7 0 7 14 0 0 0 0
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Lagena semistriata 0 0 0 0 18 0 0 0 0 0 0 0 0 8 7 0 0 0 0 0 0 0
Lagena substriata 0 13 9 32 53 22 14 0 34 34 0 0 15 15 0 8 14 14 0 9 0 0
Lagena sulcata 0 0 9 0 18 0 0 0 103 34 0 0 8 0 0 0 0 0 0 9 0 0
Lenticulina sp. 0 0 0 48 0 7 0 0 0 34 0 0 0 0 7 0 0 0 0 9 8 0
Loxostomum sp. 0 0 9 0 0 0 0 57 0 0 0 0 0 0 0 0 0 7 0 0 0 2
Nonionella sp. T1 308 176 94 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nonionella iridea 0 0 0 16 18 22 0 38 0 0 0 0 0 0 0 0 0o 21 0 0 0 0
Nonionellina labradorica 113 75| 249 143  141] 135 97 340 513 382 243 188 54 23 22 16 29 56| 106 103 40 12
Nonionoides turgida 138 189 103 64 106 0 0 38 34 34 15 0 0 0 0 0 0 7 0 0 0 2
Nonionella spp. 0 0 0 16 35 0 0 19 0 0 0 0 8 0 0 0 0 7 0 0 0 0
Nonionellina spp. 0 0 17 0 0 0 0 19 34 0 0 0 0 0 0 0 0 0 0 0 0 2
Oolina melo 6 0 0 0 0 0 0 19 0 68 0 0 0 0 0 0 0 0 0 0 0
Polymorphina spp. 0 0 9 16 0 0 0 38 0 0 15 0 0 15 0 0 7 0 7 9 0 0
Procerolagena clavata 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Procerolagena grassilima 0 0 43 0 18 15 0 0 0 0 30 14 8 23 7 0 0 0 0 9 0 0
Procerolagena mollis 0 0 17 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0 7 0 0 0
Robertina arctica 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rosalina spp. 0 0 0 32 0 0 0 0 0 102 0 0 0 0 0 0 0 0 0 0 0 0
Stainforthia fusiformis 126 119 746 669 827 277 373 340 547 306 258 838 1025 2029 402 541 1096 2112| 1144 427 304 161
Stainforthia loeblichi 0 0 17 16 0 0 0 0 0 0 0 0 8 0 0 8 7 0 7 0 16 0
Hyalin indet (round) 0 0 9 0 0 0 0 0 68 68 15 14 15 0 0 0 7 14 14 0 0 2
Hyalin indet (twisted) 0 0 17 0 18 0 0 38 0 34 30 0 8 0 0 0 0 0 0 0 0 0
Hyalin varia 6 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 2
Adercotryma glomerata 13 44 206 127 35 0 14 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0
Ammodiscus sp. 0 0 9 32 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Ammoscalaria pseudospiralis 6 0 51 8 53 22 41 189 589 484 319 65 8 8 15 0 0 0 14 9 0 0
Ammotium cassis 1 0 0 80 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cribrostomoides crassimargo 0 0 17 16 106 30 28 0 0 0 0 0 0 0 0 0 0 14 0 9 0 2
Cribrostomoides subglobosum 0 2 0 0 0 0 0 19 0 0 0 0 0 0 0 0 7 0 0 0 0 0
Cribrostomoides spp. 0 0| 206 207 317 45 69 19 103 170 46 116 62 38 44 16 21 28 14 26 16 2
Recurvoides spp. 57 44 0 0 53 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eggerelloides medius/scabrus 189 170 1055 1115 986 847 1133 4327 7756 9279 5696 3769 1125 712 920 470 516 514| 1349 1325 793 223
Haplophragmoides bradyi 6 0 0 0 0 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lagenammina difflugiformis 25 6 26 0 70 0 0 0 26 0 76 0 0 0 7 8 7 14 0 17 0 8
Leptohalysis scotti 63 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Miliammina fusca 0 0 26 32 0 7 0 19 0 102 0 0 0 23 0 0 7 21 7 9 0 2
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Paratrochammina haynesi 0 0 0 0 0 0 0 0 0 102 0 14 0 0 0 0 0 0 0 0 0
Psammosphaera bowmanni 6 0 0 0 18 0 14 0 0 0 0 0 0 8 0 0 0 0 0 0 0
Reophax subfusiformis 285 181| 583 430 722| 127 207 557 1102 1198 440 173] 139 106 153 39 29 56 92 60 32
Reophax spp. 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spiroplectammina biformis 19 50| 343 207 282 30 138 0 0 0 0 0 62 83 22 47 43 42 35 0 0
Textularia earlandi 57 0 60 0 88 0 0 0 0 0 0 0 0 8 0 0 0 7 0 0 0
Textularia kattegatensis 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Textularia spp. 0 0 26 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rotaliammina adaperta 0 0 0 32 53 22 41 0 34 68 46 14 8 23 15 0 29 21 21 9 8
Trochammina spp. 0 0 0 0 53 0 28 19 0 102 46 29 8 0 0 24 0 21 0 9 0
Agglutinated varia 6 19 137 0 0 0 0 76 0 0 0 ol 100 114 139 78 136 77 92 0 104
TOTAL 2192 2198| 8472 7418 8933| 3620 4304 11725 19544 22561 12015 8968| 4045 4308 2511 2187 2694 4013| 3963 2854 2147
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