

1 Rapid environmental responses to climate-induced hydrographic changes in

- 2 the Baltic Sea entrance
- 3 LAURIE M. CHARRIEAU¹, KARL LJUNG¹, FREDERIK SCHENK², UTE DAEWEL³, EMMA
- 4 KRITZBERG⁴ and HELENA L. FILIPSSON^{*1}
- ⁵ ¹Department of Geology, Lund University, Sweden
- 6 ²Bolin Centre for Climate Research and Department of Geological Sciences, Stockholm University, Sweden
- 7 ³Department of System Analysis and Modelling, Centre for Materials and Coastal Research, Geesthacht,
- 8 Germany
- 9 ⁴Department of Biology, Lund University, Sweden
- 10 *Corresponding author (address: Sölvegatan 12, SE-223 62; e-mail: <u>helena.filipsson@geol.lu.se</u>)
- 11 Key-words: benthic foraminiferal; NAO index; environmental reconstruction; Anthropocene;
- 12 Öresund
- 13 <u>Abstract</u>
- 14 The Öresund (the Sound), which is a part of the Danish straits, is linking the marine North Sea
- and the brackish Baltic Sea. It is a transition zone where ecosystems are subjected to large
- 16 gradients in terms of salinity, temperature, carbonate chemistry, and dissolved oxygen
- 17 concentration. In addition to the highly variable environmental conditions, the area is responding
- 18 to anthropogenic disturbances in e.g. nutrient loading, temperature, and pH. We have
- 19 reconstructed environmental changes in the Öresund during the last c. 200 years, and especially
- 20 dissolved oxygen concentration, salinity, organic matter content, and pollution levels, using
- 21 benthic foraminifera and sediment geochemistry. Five zones with characteristic foraminiferal
- 22 assemblages were identified, each reflecting the environmental conditions for respective period.

23	The largest changes occurred ~1950, when the foraminiferal assemblage shifted from a low
24	diversity fauna, dominated by the species Stainforthia fusiformis to higher diversity and
25	abundance, and dominance of the Elphidium group. Concurrently, the grain-size distribution
26	shifted from clayey — to more sandy sediment. To explore the causes for the environmental
27	changes, we used time-series of reconstructed wind conditions coupled with large-scale climate
28	variations as recorded by the NAO index, as well as the ECOSMO II model of currents in the
29	Öresund area. The results indicate increased changes in the water circulation towards stronger
30	currents in the area since the 1950's. The foraminiferal fauna responded quickly (< 10 years) to
31	the environmental changes. Notably, when the wind conditions, and thereby the current system,
32	returned in the 1980's to the previous pattern, the foraminiferal species assemblage did not
33	rebound, but the foraminiferal faunas rather displayed a new equilibrium state.

34 1 - Introduction

The Öresund (the Sound) is one part of the Danish straits between Sweden and Denmark. 35 Together with the Great — and Little Belt, they link the open-ocean waters of the North Sea and 36 the brackish waters of the Baltic Sea. The confluence of the water masses creates a north-south 37 gradient as well as a strong vertical stratification of the water in terms of salinity, carbonate 38 chemistry and dissolved oxygen concentration ([O₂]) (Leppäranta and Myrberg 2009). The depth 39 of the halocline mainly depends of the outflows from the Baltic Sea; a strong thermocline 40 develops during spring and summer, which further strengthens the vertical stratification. Thus, 41 42 the ecosystems in the Öresund are exposed – and adapted – to a unique transitional environment. The region is also characterized by intense human activities, with 4 million people 43 living in the vicinity of the Öresund and 85 million people living in the catchment area of the 44 45 Baltic Sea. Discharge from agriculture, industry, and urban areas on both the Swedish and

46	Danish sides of the strait, and the considerable impact of marine traffic – the strait is one of the
47	busiest waterways in the world - generate pollution and eutrophication of the water (HELCOM
48	2009; ICES 2010). Since the 1980's, the implementation of efficient wastewater treatment and
49	measures in agriculture contributed to markedly reduce the amount of nutrients coming from
50	river run-off (Nausch et al. 1999; Carstensen et al. 2006; Rydberg et al. 2006). However, these
51	efforts in decreasing nutrient loads have not resulted in improved water quality, due to the long
52	time scales of biogeochemical cycles to reach equilibrium in the Baltic Sea region (Gustafsson et
53	al. 2012). The Öresund, like most of the Baltic Sea, is still assessed to be eutrophic, and hypoxic
54	events are frequent (Rosenberg et al. 1996; Conley et al. 2007, 2011; HELCOM 2009;
55	Wesslander et al. 2016). Moreover, increasing temperatures and declining pH, linked to global
56	climate change and ocean acidification, have been reported for surface and bottom waters in the
57	area (Andersson et al. 2008; Göransson 2017). As a result, ecosystems in the Öresund are
58	currently under the combined impact of natural and anthropogenic stressors (Henriksson 1969;
59	Göransson et al. 2002; HELCOM 2009; ICES 2010). The multiple stressors currently affecting
60	the environment make this region particularly interesting to study, and also highlight the need to
61	obtain records of decadal and centennial environmental changes. As noted above, both recent
62	human-induced impacts and climate variability have been substantial in the region. Therefore the
63	question arises whether these factors have affected the benthic environment. Furthermore,
64	sediment records of past environmental changes can provide crucial context for ongoing and
65	future predicted changes in the Öresund and Baltic Sea regions.
66	We used the marine sediment record and its contents of foraminifera as well as sediment
67	geochemistry to obtain records of decadal environmental changes. Benthic foraminifera are
07	Seconomistry to obtain records of decadar environmentar changes. Dentine forallimitera are

68 widely used for environmental reconstructions, based on their rapid response to environmental

69	changes, broad distribution, high densities, and often well-preserved tests (shells) in the sediment
70	(e.g. Sen Gupta 1999). For instance, distribution of benthic foraminifera have been used for
71	historical environmental reconstructions of fjords on decadal to centennial timescales on the
72	Swedish west coast (Nordberg et al. 2000; Filipsson and Nordberg 2004a, 2004b; Polovodova
73	Asteman and Nordberg 2013; Polovodova Asteman et al. 2015), and in the Kattegat
74	(Seidenkrantz 1993; Christiansen et al. 1996). In the Öresund, living foraminiferal assemblages
75	have been studied (Hansen 1965; Charrieau et al. 2018), but to the best of our knowledge, no
76	studies of past foraminiferal assemblages have been performed. In this study, we used
77	foraminiferal fauna analysis in combination with sediment geochemistry and grain-size analyses
78	to reconstruct the environmental conditions of benthic systems during the last two centuries in
79	the Öresund. Furthermore, we analyzed long time series of wind conditions in the area to
80	evaluate the coupling between local changes in ecosystem variables and variations in
81	atmospheric and subsequent hydrographic conditions, and a possible link with large-scale
82	variations expressed through the North Atlantic Oscillation (NAO) index. Finally, we compared
83	our data with the model ECOSMO II (Daewel and Schrum 2013; 2017) of currents and water
84	circulation changes in the Öresund area during the period 1948-2013.

85 2 -Study site

The Öresund is a 118 km long narrow strait (Figure 1). The water depth in the northern part is on average 24 m but it reaches 53 m south of the Island of Ven. The Öresund is an important link between the North Sea, Skagerrak, Kattegat and the Baltic Sea (Figure 1), and up to 30 % of the water exchange in the region goes through the Öresund (Sayin and Krauß 1996; Leppäranta and Myrberg 2009); the remaining part goes through the Great and Little Belt. The width of the Öresund varies between 4 and 28 km, and the water has overall high current velocities, up to 1.5

92	m.s ⁻¹ at the upper water layer in the northern part (Nielsen 2001). The fully marine Skagerrak
93	consists of water masses from the North Sea and the North Atlantic and in general a thin surface
94	layer with water originating from the Baltic Sea and rivers draining into the sea; the water
95	circulation forms a cyclonic gyre (cf. Erbs-Hansen et al. 2012). Part of the Skagerrak waters
96	reach the Kattegat and the Baltic Sea, where they are successively diluted with the large amounts
97	of freshwater (around 15,000 m ³ /s, Bergström and Carlsson 1994) draining into the Baltic Sea
98	from numerous large rivers. The low-saline Baltic Sea surface water is transported by the Baltic
99	Current, which is typically confined along the Swedish west coast in the Kattegat but may cover
100	a larger surface area towards the west, depending on wind direction. The Baltic Current later
101	joins the Norwegian Coastal Current in the Skagerrak (Figure 1). The large fresh water input and
102	the subsequent large salinity difference between the Kattegat and Baltic Sea result in a two-layer
103	structure in the Öresund (Figure 2) (She et al. 2007; Leppäranta and Myrberg 2009). The water
104	stratification is influenced by the surface water from Arkona Basin (salinity 7.5-8.5), the
105	surface water from the Kattegat upper layer (salinity 18-26) and the lower layer of the Kattegat
106	(salinity 32—34).
107	Salinity, temperature, pH, [O ₂] and nutrient content, here represented by dissolved inorganic
108	nitrogen concentration [DIN] (nitrate + nitrite + ammonium), in the surface and bottom waters of

the Öresund vary seasonally (Figure 3, Appendix A). In the surface and bottom water, salinity

ranges between \sim 8 and \sim 18 and between \sim 29 and \sim 34, respectively, and it is more stable between

111 April and July, when the stratification is the strongest (Figure 3). Temperature ranges between

112 ~ 1 °C in February and ~ 19 °C in July in the surface water, while in the bottom water, the lowest

- temperature is found in March—April with ~5° C, and the highest temperature in October—
- 114 November with \sim 13 °C. The pH varies between \sim 8.1 and \sim 8.6 in the surface water, and between

- 115 \sim 7.8 and \sim 8.6 in the bottom water, without a clear seasonal pattern (Figure 3). [O₂] in the bottom
- 116 water reaches $\sim 7 \text{ mL.L}^{-1}$ in January, and it is typically below 2 mL.L⁻¹ in October, approaching
- hypoxic values. In the surface water, [DIN] can reach \sim 7 µmol.L⁻¹ in January, and it is \sim 0
- 118 μ mol.L⁻¹ between April and August (Figure 3).
- 119 <u>3 Materials and Methods</u>
- 120 3.1 Sampling
- 121 A suite of sediment cores, as well as water samples from the water column, were collected in
- 122 November 2013 during a cruise with r/v *Skagerak*. Here we present the data from two sediment
- 123 cores sampled at the Öresund station DV-1 (55°55.59' N, 12°42.66' E) (Figure 1), north of the
- 124 Island of Ven. The water depth was 45 m, and CTD casts were taken to measure salinity,
- temperature and [O₂] in the water column. Water samples were collected at 10, 15, 20, 30 and 43
- m from the Niskin bottles for carbonate chemistry analyses. The CTD and carbonate chemistry
- 127 data are presented in Charrieau et al. (2018). The salinity profile in the water column showed the
- typical halocline at 10 m depth (Figure 2). The temperature and [O₂] decreased with depth. The
- 129 pH values decreased with depth and increase again when reaching the bottom water (Figure 2).
- 130 In general, it is challenging to obtain sediment cores in the Öresund, due the high current
- velocities up to 1.5 m.s⁻¹ (Nielsen 2001), human-induced disturbances, and limited areas of
- recent sediment deposition (Lumborg 2005), but our site north of Ven represents an
- accumulation area. The cores (9-cm-inner-diameter) were collected using a GEMAX twin barrel
- 134 corer. The corer allowed sampling of 30 and 36 cm long sediment cores (referred in this study as
- 135 core DV1-G and DV1-I, respectively), which were sliced into one centimeter sections. The
- samples from the DV1-G core were analyzed for carbon and nitrogen content, grain size

- 137 distribution, and dated using Gamma spectroscopy. The samples from the DV1-I core were
- 138 analyzed with respect to foraminiferal fauna and carbon and nitrogen content. The distinct
- 139 carbon content profiles, measured on both cores, were used to correlate the ²¹⁰Pb dated DV1-G
- 140 core to the DV1-I core used for foraminiferal analyses.
- 141 3.2 Chronology
- 142 The age-depth model was established using 210 Pb and 137 Cs techniques on samples from the
- 143 DV1-G core. The samples were measured with an ORTEC HPGe (High-Purity Germanium)
- 144 Gamma Detector at the Department of Geology at Lund University, Sweden. Corrections for
- self-absorption were made for ²¹⁰Pb following Cutshall et al. (1983). The instruments were
- calibrated against in-house standards and the maximum error was 0.5 year in the measurements.
- 147 Excess (unsupported) ²¹⁰Pb was measured down to 23 cm and the age model was calculated
- based on the Constant Rate of ²¹⁰Pb Supply (CRS) model (Appleby 2001).
- 149 3.3 Foraminifera analyses

The foraminiferal samples were prepared following standard micropalaeontological techniques 150 (e.g. Murray 2006). Approximately 10 g of freeze-dried sediment per sample were wet sieved 151 thought a 63-µm mesh screen and dried on filter paper at room temperature. Subsequently, the 152 samples were dried sieved through 100- and 500-um mesh screens and separated into the 153 fractions 100-500 μ m and >500 μ m. The foraminifera from every second centimeter of the core -154 plus from additional centimeters around key zones - were picked and sorted under a Nikon 155 microscope. A minimum of 300 specimens per sample were picked and identified, if necessary 156 the samples were split with an Otto splitter (Otto 1933). For taxonomy at the genus level, we 157

mainly followed Loeblich and Tappan (1964) with some updates from more recent literature, e.g.

- 159 Tappan and Loeblich (1988). For taxonomy at the species level, we mainly used Feyling-
- 160 Hanssen (1964), Feyling-Hanssen et al. (1971) and Murray and Alve (2011). For original
- descriptions of the species, see Ellis and Messina (1940 and supplements up to 2013).
- 162 Recently, the eastern Pacific morphospecies *Nonionella stella* has been presented as an invasive
- species in the Skagerrak-Kattegat region (Polovodova Asteman and Schönfeld 2015). However,
- a comparison of *N. stella* DNA sequences from the Santa Barbara Basin (USA) (Bernhard et al.
- 165 1997) with the Swedish west coast specimens demonstrates that they represent two closely
- related species but are not conspecific (Deldicq et al. in press). Therefore, we have referred to the
- species found here as Nonionella sp. T1, following Deldicq et al. (in press). The species
- 168 Verneuilina media (here referred to the genus Eggerelloides), which has often been reported in
- 169 previous studies from the Skagerrak-Kattegat area (e.g. Conradsen et al. 1994), was
- 170 morphologically close to *Eggerelloides scabrus* in the present material, and these two species
- 171 have been grouped as *E. medius/scabrus*. The taxon *Elphidium excavatum* forma *clavata* (cf.
- 172 Feyling-Hanssen 1972), was referred to as *Elphidium clavatum* following Darling et al. (2016).
- 173 Elphidium clavatum and Elphidium selseyense (Heron-Allen and Earland) were morphologically
- 174 difficult to separate in this region, as transitional forms occur. The dominant species was *E*.
- 175 *clavatum*, but we acknowledge that a few individuals of *E. selseyense* could have been included
- in the counts. The taxon Ammonia beccarii was referred to as Ammonia batava, following recent
- molecular work done on the taxon *Ammonia* in the Kattegat region (Groeneveld et al., 2018; Bird
- 178 et al. in press).
- 179 Foraminiferal density was calculated and normalized to the number of specimens per 50 cm³.
- 180 Data of densities of living + dead for a for the first two centimeters of the core are from
- 181 Charrieau et al. (2018). Some specimens displayed decalcified tests, however the inner organic

- 182 linings were preserved. These inner organic linings were reported separately and not included in
- 183 the total foraminiferal counts. Benthic foraminiferal accumulation rates were calculated as
- 184 follows:
- 185 BFAR (number of specimens.cm⁻².yr⁻¹) = BF x SAR,
- where BF is the number of benthic for a per cm^3 and SAR is the sediment accumulation
- rate (cm.yr⁻¹). For a miniferal species that accounted for >5 % of the total fauna in at least one of
- the samples were considered as major species, and their density was used in statistical analysis.
- 189 To determine foraminiferal zones, stratigraphically constrained cluster analysis was performed,
- 190 using the size-independent Morisita's index to account for the large differences in the densities
- 191 between samples. A dendrogram was then constructed based on arithmetic averages with the
- 192 UPGMA method (Unweighted Pair Group Method with Arithmetic Mean). Correspondence
- analysis was also performed, to determine significant foraminiferal species in each zone.
- 194 Statistical analyses were performed using the PAST software (Hammer et al. 2001).
- 195 3.4 Organic matter analyses
- 196 Total Organic Carbon (TOC) and Total Nitrogen (TN) content were measured for both DV1-G
- and DV1-I. Approximately 8 mg of freeze-dried sediment was homogenized for each centimeter
- and placed in silver capsules. Removal of inorganic carbon was carried out by in-situ
- acidification (2M HCl) method based on Brodie et al. (2011). TOC and TN content were
- analyzed on a Costech ECS 4010 Elemental Analyzer at the Department of Geology, Lund
- 201 University. The instrument was calibrated against in-house standards. The analytical precisions
- showed a reproducibility of 0.2 % and 0.03 % for TOC and TN contents, respectively. The molar
- 203 C/N ratio was calculated.

204 3.5 Grain-size analyses

205	Grain-size analyses were performed on core DV1-G using 3.5 to 5 g of freeze-dried sediment for
206	each centimeter. Organic matter was removed by adding 15 mL of 30 $\%~H_2O_2$ and heating
207	during 3 to 4 minutes until the reaction ceased. After the samples had cooled down, 10 mL of
208	10 % HCl was added to remove carbonates; thereafter the sediment was washed with milli-Q
209	until its pH was neutral. In the last step, biogenic silica was removed by boiling the sediment in
210	100 mL 8 % NaOH, and then washed until neutral pH was reached. The sand fraction (>63 $\mu m)$
211	was separated by sieving and the mass fraction of sand of each sample was calculated. Grain
212	sizes $<63 \mu m$ were analyzed by laser diffraction using a Sedigraph III Particle Size Analyzer at
213	the Department of Geology, Lund University. The data were categorized into three size groups,
214	<4 µm (clay), 4–63 µm (silt) and 63–2000 µm (sand).
214 215	<4 μm (clay), 4–63 μm (silt) and 63–2000 μm (sand). 3.6 Climate data and numerical modeling
215	3.6 Climate data and numerical modeling
215 216	3.6 Climate data and numerical modelingData from the dataset High Resolution Atmospheric Forcing Fields (HiResAFF) covering the
215 216 217	3.6 Climate data and numerical modelingData from the dataset High Resolution Atmospheric Forcing Fields (HiResAFF) covering the time period 1850–2008 (Schenk and Zorita 2012; Schenk 2015) were used to study the variations
215 216 217 218	3.6 Climate data and numerical modelingData from the dataset High Resolution Atmospheric Forcing Fields (HiResAFF) covering the time period 1850–2008 (Schenk and Zorita 2012; Schenk 2015) were used to study the variations of near-surface (10 m) wind conditions during the winter half of the year (October to March).

- 222 with updates taken from the Climate Research Unit (CRU,
- 223 <u>https://crudata.uea.ac.uk/cru/data/nao/</u>). To allow comparison, the NAO and wind data were
- normalized relative to the period 1850–2008. Changes in the currents through the Öresund and
- the Kattegat were taken from the fully coupled physical biogeochemical model ECOSMO II

- (Daewel and Schrum 2013, 2017), which was forced by NCEP/NCAR reanalysis data and covers
- the period 1950–2013. On model ECOSMO II, the simulated South-North currents are
- 228 represented as VAV (vertically averaged V- component) and the simulated West-East currents as
- 229 UAV (vertically averaged U component).
- 230 <u>4 Results</u>
- 4.1 Age model
- The unsupported ²¹⁰Pb showed a decreasing trend with depth in the DV1-G core (Figures 4A,
- 4B). The peak observed in the 137 Cs around 9 cm corresponds to the Chernobyl accident in 1986
- (Figure 4C). The unsupported ²¹⁰Pb allowed direct dating of the core between 2013 and 1913.
- The sedimentation rate ranged between 1 and 5.6 mm. y^{-1} , with an average of 2.2 mm. y^{-1} , and
- was decreased with depth. The ages of the lower part of the sediment record were deduced by
- linear extrapolation based on a sedimentation rate of 1.4 mm.y⁻¹, corresponding to the linear

mean sedimentation rate between the years 1913 and 1946 (Figure 4D).

- 4.2 Foraminiferal assemblages and sediment features
- 240 The foraminiferal assemblages were composed of 76 species from the porcelaneous, hyalines
- 241 and agglutinated forms (Appendix B). Eleven foraminiferal species had relative abundance
- higher than 5 % in at least one sample and were considered as major species (Plate 1, Figure 5).
- 243 The cluster analysis reveals three main foraminiferal zones (FOR-A, FOR-B, and FOR-C),
- separated into five subzones to which we assigned dates according to the age model: FOR-A1
- 245 (1807–1870), FOR-A2 (1870–1953), FOR-B1 (1953–1998), FOR-B2 (1998–2009), and FOR-C
- 246 (2009–2013) (Figures 5, 6). The correspondence analysis resulted in three factors explaining

- 247 92 % of the variance, and in assemblages consisting in seven significant species, presented in
- 248 order of contribution: Nonionella sp. T1, Nonionoides turgida, Ammonia batava, Stainforthia
- 249 *fusiformis*, *Elphidium albiumbilicatum*, *E. clavatum* and *Elphidium magellanicum* (Table 1).
- 250 421. Zone FOR-A1 (1807–1870)
- The foraminiferal accumulation rate (BFAR) was on average 5 ± 3 specimens.cm⁻².y⁻¹ in zone
- FOR-A1 (Figure 5). The Shannon index was stable and low, around 1.77 ± 0.1 (Figure 5). The
- agglutinated species *Eggerelloides medius/scabrus* and the hyaline species *Stainforthia*
- 254 *fusiformis* made major contributions to the assemblages (relative abundances up to 53 % and
- 255 34 %, respectively; Figure 5A). Ammonia batava, the three Elphidium species (E.
- albiumbilicatum, E. clavatum, and E. magellanicum), Nonionellina labradorica and the
- agglutinated species *Reophax subfusiformis* were also major species with abundances up to 7 %.
- The TOC and C/N values on this period were stable and were on average 3.36 % and 8.8 %,
- respectively (Figure 7). The clay size fraction dominated the sediment at the end of this period
- with a mean value of 63 %, and the sand content was around 7 % (Figure 7).
- 261 422. Zone FOR-A2 (1870–1953)
- The BFAR was on average 9 ± 5 specimens.cm⁻².y⁻¹ in zone FOR-A2 (Figure 5). The Shannon
- index was stable and low, around 1.94 ± 0.15 (Figure 5). *Stainforthia fusiformis* dominated the
- assemblage with relative abundances up to 56 % and BFAR up to 608 specimens.cm $^{-2}$.y⁻¹
- 265 (Figures 5A, 5B), which is the highest BFAR observed for this species along the core.
- *Egerelloides medius/scabrus* was still very abundant, up to 48 % (Figure 5A). *Ammonia batava*,
- the three *Elphidium* species and *N. labradorica* were present but with lower abundances than in
- the zone FOR-A1 (maximum 5%). *Bulimina marginata* started to be more abundant with an

269	average relative abundance of 2 % in the zone. Reophax subfusiformis was still a part of the
270	assemblage and ranged between 1 and 8 %. The TOC and C/N values were stable and were on
271	average 3.5 % and 8.74 %, respectively (Figure 7). The clay size fraction dominated the
272	sediment during this period with a mean value of 63 %, and the sand content was around 6 $\%$
273	(Figure 7).
274	423. Zone FOR-B1 (1953–1998)
275	The BFAR increased massively during the zone FOR-B1 with on average 54 ± 31 specimens.cm ⁻
276	² .y ⁻¹ and with a peak at 93 specimens.cm ⁻² .y ⁻¹ around 1965 (Figure 5). It is lower during the
277	second part of the zone. The Shannon index was higher than in previous zones and it
278	progressively increased towards the top of the zone (Shannon index average 2.34 ± 0.3) (Figure
279	5). The highest BFAR along the core were observed for all the dominant species of the previous
280	zone FOR-A2, except for S. fusiformis (Figure 5B). The zone was then also characterized by a
281	drastic drop in the relative abundance of S. fusiformis from 31 to 2 % (Figure 5A).
282	Eggerrelloides medius/scabrus gradually decreased in the zone, with relative abundances from
283	49 to 24 %. The highest relative abundance of <i>A. batava</i> for the entire record was in this zone but
284	it was slowly decreasing as well, from 10 to 3 %. The <i>Elphidium</i> group was more abundant than
285	in the FOR-A zones and their relative abundance was increasing, especially for E. clavatum
286	(increasing up to 23 %). Bulimina marginata, N. labradorica and R. subfusiformis had a relative
287	abundance between 2 and 6 %. A period of lower TOC values was observed during zone FOR-
288	B1 between 1953 and 1981, with an average of 2.38 % (Figure 7). On the same period, the sand
289	content showed a pronounced increase, with an average of 24 % (Figure 7).

290 424. Zone FOR-B2 (1998–2009)

- In zone FOR-B2 the BFAR was still high, on average 55 ± 6 specimens.cm⁻².y⁻¹ (Figure 5). The
- Shannon index was high with an average of 2.8 ± 0.2 (Figure 5). The dominant species in the
- zone were *E. clavatum* (up to 25 %) and *Eggerelloides medius/scabrus* (up to 15 %; Figure 5A).
- 294 The other two *Elphidium* species reached their highest relative abundances over the core (up to
- 295 6%). Nonionella sp. T1, which had not occurred in the record until now, appeared in this zone
- with a relative abundance of 1 %. Nonionoides turgida, which was present in very low
- abundances along the core, had a mean abundance of 1 % in the zone (Figure 6A). Stainforthia
- *fusiformis* was present with up to 9 % in relative abundance and a BFAR higher than in zone
- 299 FOR-B1 (up to 570 specimens.cm⁻².y⁻¹). Ammonia batava, B. marginata, N. labradorica, and R.
- subfusiformis were present and ranged between 2 and 8 %. The TOC values were increasing,
- 301 with on average 3.05 % (Figure 7). The sediment was dominated by the clay fraction that was
- increasing (mean value of 58 %), and the sand content was around 17 % (Figure 7).
- 303 425. Zone FOR-C (2009–2013)
- The BFAR was lower than in previous zones FOR-B1 and FOR-B2, with on average 21 ± 5
- 305 specimens.cm⁻².y⁻¹ (Figure 5). The Shannon index was the highest during FOR-C (Shannon
- index average 2.93 ± 0.07) (Figure 5). Nonionella sp. T1 was a dominant specie in the zone with
- a strong increase in relative abundance (from 1 to 14 %) and in BFAR (from 61 to 137
- 308 specimens.cm⁻².y⁻¹) (Figures 5A, 5B). *Elphidium clavatum* and *R. subfusiformis* were also
- 309 dominant species with abundances up to 13%. Nonionoides turgida had its highest relative
- abundance and BFAR over the core during the zone, with up to 9 % and 342 specimens.cm⁻².y⁻¹,
- 311 respectively (Figures 5A, 5B). *Eggerelloides medius/scabrus* had its lowest relative abundance
- over the core (up to 9%). Bulimina marginata, the other two Elphidium species, N. labradorica
- and *S. fusiformis* were still present (between 1 and 6 %), while *Ammonia batava* was absent

- during the zone. The TOC and C/N values were on average 3.71 % and 8.17 %, respectively
- 315 (Figure 7). The clay size fraction dominated the sediment with a mean value of 66 % and the
- sand fraction was 7 % (Figure 7).
- 317 426. Inner organic linings
- 318 Decalcified specimens were few and ranged between 0 and 4 specimens.cm $^{-2}$.y $^{-1}$ with an average
- of 1 specimen.cm⁻².y⁻¹ (Fig. 5). They were observed throughout the core and especially during
- 320 zone FOR-B2, and the morphology of the remaining inner organic linings allowed the
- 321 identification of the taxon *Ammonia* (Plate 1).
- 322 4.3 Simulated data from model ECOSMO II
- 323 The VAV (vertically averaged South-North current velocity) through the Öresund from the
- 324 model ECOSMO II showed a reversed pattern compared to the UAV (vertically averaged West-
- East current velocity) through the Kattegat (Figure 8). Thus, higher VAV through the Öresund
- translates to an increase in the East to West flow in the Kattegat (lower UAV), suggesting a
- 327 stronger outflow from the Baltic Sea. The VAV through the Öresund had the lowest values
- around 1955 (Figure 8), followed by a shift to very high values, which dominated throughout
- 329 1960–70. A comparable period with increased outflow from the Baltic into the Kattegat re-
- 330 occurred during the period 1993–2000.

331 5 - Discussion

Our environmental interpretations of the foraminiferal assemblages were based on the ecological

- 333 characteristics of each major species (Table 2). Based on our environmental reconstructions, we
- could infer environmental changes regarding [O₂], salinity, organic matter content, and pollution

- 335 levels. Furthermore, we linked local environmental changes to larger atmospheric and
- 336 hydrographic conditions.
- **337** 5.1. 1807 1870

338 All the major species found in this period are tolerant to low oxygen conditions, especially the two main species: S. fusiformis and E. medius/scabrus (Table 2). Stainforthia fusiformis is an 339 opportunistic species used to hypoxic and potentially anoxic conditions (Alve 1994), and E. 340 341 *medius/scabrus* specimens have been found alive down to 10 cm in the sediment, where no 342 oxygen was available (Cesbron et al. 2016). Stainforthia fusiformis and N. labradorica are also able to denitrify (Piña-Ochoa et al. 2010). The fact that species tolerant to low oxygen conditions 343 344 dominated, and the presence of species that have the capacity to denitrify, suggest that low 345 oxygen conditions were prevailing during this period. Furthermore, S. fusiformis prefers organic 346 rich substrate and clayey sediment, which was measured in our core during this time period (Figure 7). The low species diversity, as indicated by the low Shannon index in this section of 347 the core, is usually linked with low salinity (Sen Gupta 1999a). Most of the major species found 348 349 during this period, such as the Elphidium group, R. subfusiformis and A. batava tolerate lower salinities, and are typical of brackish environments (Table 2). The low occurrence of B. 350 marginata, a typical marine species, also suggests a salinity lower than in the open ocean. 351 However, the salinity was probably not below 30, which is the lower limit for N. labradorica and 352 S. fusiformis, which were present throughout the period (Figure 5, Table 2). In summary, this 353 354 period appears to have been characterized by IO_2 , high organic matter content, and salinity 355 around 30.

356 5.2 1870 - 1953

357	Stainforthia fusiformis was largely dominating the assemblage during this period, which may
358	suggest even lower oxygen conditions than during the previous period. This would also go along
359	with the low species diversity, which is usually linked to low salinity. However, the occurrence
360	of the marine species <i>B. marginata</i> suggests that the salinity was at least 32. Low oxygen is
361	frequently associated with high organic matter contents, since oxygen is consumed during
362	remineralization of organic matter. The TOC levels observed in our core in this zone were high,
363	but not higher than in the previous zone (Figure 7). At the time of the industrial revolution, the
364	Öresund was used as a sewage recipient for a mixture of domestic and industrial wastes,
365	industrial cooling water and drainage water (Henriksson 1968), and the amount of marine traffic
366	increased considerably during this time period. This diverse type of pollution could have
367	modified the water properties, for example regarding the carbonate chemistry and pH. Indeed,
368	this zone is characterized by the presence of organic linings in the core (see also section 5.6).
369	Moreover, heavy metals, fuel ash (black carbon) and pesticides have been demonstrated to
370	generally have a negative effect on foraminiferal abundance and diversity (Yanko et al. 1999).
371	Pollution and low oxygen concentration could explain the low species BFAR and diversity as
372	well as the dissolution of tests during this period. Other species that were present, i.e. the
373	agglutinated species E. medius/scabrus and R. subfusiformis, are known to be tolerant to various
374	kind of pollution (Table 2).

375 5.3 1953 – 1998

During this period, the large increase in the general BFAR could suggest that the specimens were not in situ, but transported into the area. In line with this is the coarser grain size observed during this period, indicating possible changes in the current system (Figure 7). However, the dating of our core showed continuous sediment accumulation without any interruption during this period

380	(Figure 4). Moreover, all the new dominating species were already present in the core, even if in
381	lower relative abundances (Figure 5A). This indicates that the BFAR increase is most likely not
382	due to specimens transport but rather as a result of a change in substrate and environmental
383	conditions that became favorable for a different foraminiferal assemblage. The higher
384	foraminiferal diversity compared to previous periods and the decrease in the relative abundance
385	of S. fusiformis may indicate more oxic conditions. Elphidium clavatum has been found in coarse
386	sediment in the area (Bergsten et al. 1996), and other species that tolerate sandy environments
387	and varying TOC dominated the assemblage, such as A. batava, the other species in the
388	Elphidium group, B. marginata, and E. medius/scabrus. Furthermore, anthropogenic activities
389	such as agricultural practices were intensified during this period until the 1980s, which resulted
390	in increased nutrient loads and resulting eutrophication (i.e. Rydberg et al. 2006). The increase in
391	organic matter may have been beneficial for foraminifera as food source. Food webs and species
392	interaction like intra and inter competition might also have been modified, giving the advantage
393	to some species such as the <i>Elphidium</i> group to develop in these new environmental conditions.
394	The temporal coincidence with the shifts seen in the sediment record and the anomalous wind
395	conditions suggests a notable change of the currents through the Öresund (Figures 8, 9). The
396	simulated currents through the Öresund confirm such an abrupt change characterized by a shift
397	from very limited outflow from the Baltic to the Kattegat before ~1960 to more than a decade of
398	high relative outflow (high VAV) from the Öresund to the Kattegat and high current velocities
399	(Figure 8). While the simulation only covers the period after 1950, the analysis of wind
400	conditions and the NAO index suggest that the anomalies in the current and sediment pattern
401	from ~mid 1950's might have been unprecedented since at least the middle of the 19 th century
402	(Figure 9). The shift in local sediment properties and the shift to higher BFAR and species

402	diversity success a combination of an employe summents during a namiad of supremulty acceptive
403	diversity suggest a combination of anomalous currents during a period of unusually negative
404	NAO index and the abrupt first advection of anthropogenic eutrophication from the Baltic Sea
405	towards the Kattegat. Consistent with our findings, long-term variations in Large Volume
406	Changes in the Baltic Sea (LVS, Lehmann and Post 2015; Lehmann et al. 2017), which are
407	calculated from >29 cm (~100 km ³) daily sea-level changes at Landsort (58.74° N; 17.87° E) for
408	1887–2015, show an unusual cluster of both, more frequent and also larger LVCs during the
409	1970's to 1980's relative to the entire time period. Notably, this period coincides with the most
410	dramatic shift in foraminiferal BFAR and species diversity as well as an increase in sand content.
411	The period before the "regime shift" of the 1950's to 1960's is dominated by very infrequent and
412	few large LVC events. After the shift, the 1990's show also very few or partly no LVC events
413	with generally record-low Major Baltic Inflow events.
414	Thus, during this period, the ecosystems were affected both by climatic effects through
415	sedimentation changes, and human impact. After ~1980, the general BFAR was lower during a
416	short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and
416 417	
	short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and
417	short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and water treatments in order to reduce the nutrients discharge (Carstensen et al. 2006; Conley et al.
417 418	short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and water treatments in order to reduce the nutrients discharge (Carstensen et al. 2006; Conley et al. 2007), which could have reduced the food input. Interestingly, when the sedimentation pattern
417 418 419	short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and water treatments in order to reduce the nutrients discharge (Carstensen et al. 2006; Conley et al. 2007), which could have reduced the food input. Interestingly, when the sedimentation pattern changes again and the sand content decreases markedly (Figure 7), the new species in the
417 418 419 420	short time (Figures 5, 9). This could be linked to the measures that were taken in agriculture and water treatments in order to reduce the nutrients discharge (Carstensen et al. 2006; Conley et al. 2007), which could have reduced the food input. Interestingly, when the sedimentation pattern changes again and the sand content decreases markedly (Figure 7), the new species in the foraminiferal fauna do not return to previous relative abundances as one could have expected

423 5.4 1998 - 2009

424 The foraminiferal assemblage in this zone was similar to the previous one, with high BFAR, high 425 diversity, and the *Elphidium* group as dominating species. This period is, however, characterized by the appearance of two new major species: N. turgida and Nonionella sp. T1. Nonionella sp. 426 T1 is suggested to be an invasive species in the region which arrived by ship ballast tanks around 427 1985, and rapidly expanded to the Kattegat and Öresund (Polovodova Asteman and Schönfeld 428 2015). According to our dated core, the species arrived in the Öresund ~2000 CE (Figure 5). The 429 430 species is also present on the south coast of Norway since after 2009 (Deldicq et al., in press), but additional genetic analyses are necessary to have a better overview of the species' origin and 431 expansion. Nonionoides turgida is an opportunistic species that prefers high levels of organic 432 433 matter in the sediment, as observed in our core during this period (Figure 7). The increase in the S. fusiform is BFAR suggest lower $[O_2]$ than in the previous zone, which was indeed a general 434 trend in the Danish waters during this time period (Conley et al. 2007). This period was then 435 characterized by $\log [O_2]$, high organic matter content, and open ocean salinity. 436

437 5.5 2009 - 2013

438 The ability of *Nonionella* sp. T1 to denitrify and its tolerance to varying environment may

439 explain its rapid increase during this period. The increase of *N. turgida* also suggests higher

- 440 levels of organic matter in the sediment. The dominance of these two species and the lower
- 441 BFAR compared to previous periods suggest low oxygen levels. This period is thus characterized

442 by low [O₂], high organic matter content, and open ocean salinity.

443 5.6 Dissolution

444 The inner organic linings of the taxon *Ammonia* were observed (in low numbers, < 5 units) along

the whole core, except in the top two centimeters (Figure 5). Inner organic linings of the taxa

- 446 Ammonia and/or Elphidium were noticed in previous studies among dead fauna in the region
- 447 (Jarke 1961; Hermelin 1987: Baltic Sea; Christiansen et al. 1996; Murray and Alve 1999:
- 448 Kattegat and Skagerrak; Filipsson and Nordberg 2004b: Koljö Fjord). Dissolution of calcareous
- 449 for a for a miniferal tests has been considered as a taphonomic process, affecting the test of the
- 450 specimens after their death (Martin 1999; Berkeley et al. 2007). However, living decalcified
- 451 for aminifera have been observed in their natural environment in the south Baltic Sea (Charrieau
- 452 et al. 2018) and the Arcachon Bay, France (Cesbron et al. 2016) and, proving that test dissolution
- 453 can also occur while the specimens live. In any case, low pH and low calcium carbonate
- 454 saturation are suggested as involved in the observed dissolution (Jarke 1961; Christiansen et al.
- 455 1996; Murray and Alve 1999; Cesbron et al. 2016; Charrieau et al. 2018). Test dissolution may
- 456 occur in all calcitic species, but only the organic linings of *Ammonia* were found in our study,
- 457 probably because these were more robust to physical stress such as abrasion.

458 6 - Conclusion

- 459 In this study, we described an environmental record from the Öresund, based on benthic
- 460 for a minifera and geochemical data and we link the results with reconstructed wind data, NAO
- 461 index and current changes model. Five foraminiferal zones were differentiated and associated
- 462 with environmental changes in terms of salinity, [O₂], and organic matter content. The main
- event is a major shift in the foraminiferal assemblage ~1950, when the BFAR massively
- 464 increased and S. fusiformis stopped dominating the assemblage. This period also corresponds to
- 465 an increase in grain-size, resulting in a higher sand content. The grain-size distribution suggests
- 466 changes in the current velocities which are confirmed by simulated current velocity through the
- 467 Öresund. Human activities through increased eutrophication also influenced the foraminiferal

468 fauna changes during this period. Organic linings of Ammonia were observed throughout the 469 core, probably linked to low pH and calcium carbonate saturation, affecting test preservation. 470 The long-term reconstruction of sediment – and ecosystem parameters since ~ 1807 suggests that 471 the onset of increased anthropogenic eutrophication of the eastern Kattegat started with an abrupt 472 shift ~1960 during a period of strongly negative NAO. With unusually calm wind conditions 473 during the winter half and increased easterly winds, the conditions were ideal for larger Baltic 474 outflow invents which then allowed more frequent and larger Baltic inflow events, as calculated from LVC events during this period. The sediment record with unprecedented high temporal 475 476 resolution points towards the importance of considering also large Baltic outflow events to the Kattegat which have a large impact at least at Ven Island and possibly larger parts of the 477 Kattegat. Because the Baltic Sea has much higher eutrophication levels and less oxygenated and 478 479 less saline waters, larger outflow events may have a significant impact also on the Kattegat. 480 Periods with negative NAO or conditions with intense atmospheric blocking over Scandinavia 481 like 2018 may also increase the influence of Baltic Sea problems on the Kattegat region.

482 <u>Acknowledgments</u>

We would like to thank the captain and the crew of the r/v *Skagerak*. We acknowledge Git
Klintvik Ahlberg for the assistance in the laboratory, Yasmin Bokhari Friberg and Åsa Wallin
for the help with the grain-size analysis, and Guillaume Fontorbe for help with the age model.
The hydrographic data used in the projected is collected from SMHI's data base SHARK. The
SHARK data collection is organized by the environmental monitoring program and funded by
the Swedish Environmental Protection Agency. The study was financially supported by the

- 489 Swedish Research Council FORMAS (grants 2012-2140 and 217-2010-126), the Royal
- 490 Physiographic Society in Lund and Oscar and Lili Lamm's Foundation.
- 491 <u>Supplementary data</u>
- 492 Appendix A with time series of salinity, temperature and dissolved oxygen concentration at the
- bottom water of the Öresund and Appendix B with total foraminiferal faunas normalized to 50
- 494 cm^3 along the DV core are available in the online version of the article.

495 <u>References</u>

496	Alve, E. « Opportunistic Features of the Foraminifer Stainforthia Fusiformis (Williamson): Evidence
497	from Frierfjord, Norway ». Journal of Micropalaeontology 13 (1): 24-24.
498	https://doi.org/10.1144/jm.13.1.24. 1994.
499	Andersson, P., B. Håkansson, J. Håkansson, and E. Sahlsten. « SMHI Report: Marine acidification - On
500	effects and monitoring of marine acidification in the seas surrounding Sweden ». Report
501	Oceanography No 92. 2008.
502	Appleby, P. G. « Chronostratigraphic techniques in recent sediments ». In Tracking environmental change
503	using lake sediments, Last W. M. and Smol J. P. Vol. 1. Springer Netherlands.
504	http://www.springer.com/gp/book/9780792364825.2001.
505	Bergsten, H., K. Nordberg, and B. Malmgren. « Recent benthic foraminifera as tracers of water masses
506	along a transect in the Skagerrak, North-Eastern North Sea ». Journal of Sea Research 35 (1-3):
507	111-21. https://doi.org/10.1016/S1385-1101(96)90740-6. 1996.
508	Bergström, S., and B. Carlsson. « River runoff to the Baltic Sea - 1950-1990 ». Ambio 23 (4-5): 280-87.
509	1994.
510	Berkeley, A., C. T. Perry, S. G. Smithers, B. P. Horton, and K. G. Taylor. « A review of the ecological
511	and taphonomic controls on foraminiferal assemblage development in intertidal environments ».
512	Earth-Science Reviews 83 (3): 205-30. https://doi.org/10.1016/j.earscirev.2007.04.003. 2007.
513	Bernhard, J. M., B. K. Sen Gupta, and P. F. Borne. « Benthic foraminiferal proxy to estimate dysoxic
514	bottom-water oxygen concentrations; Santa Barbara Basin, U.S. pacific continental margin ».
515	Journal of Foraminiferal Research 27 (4): 301-10. https://doi.org/10.2113/gsjfr.27.4.301. 1997.
516	Bird, C., M. Schweizer, A. Roberts, W.E.N. Austin, K.L. Knudsen, K.M. Evans, H.L. Filipsson, M.D.J.
517	Sayer, E. Geslin, and K.F. Darling. « The genetic diversity, morphology, biogeography, and
518	taxonomic designations of <i>Ammonia</i> (Foraminifera) in the Northeast Atlantic ». Marine
519	Micropaleontology. https://doi.org/10.1016/j.marmicro.2019.02.001. In press.
520 521	Brodie, C.R., M.J. Leng, J.S. L. Casford, C.P. Kendrick, J.M. Lloyd, Z. Yongqiang, and M.I. Bird. « Evidence for bias in C and N concentrations and δ^{13} C composition of terrestrial and aquatic
522	organic materials due to pre-analysis acid preparation methods ». Chemical Geology 282 (3–4):
523	67-83. https://doi.org/10.1016/j.chemgeo.2011.01.007. 2011.
525 524	Carstensen, J., D. J. Conley, J. H. Andersen, and G. Ærtebjerg. « Coastal eutrophication and trend
525	reversal: A Danish case study ». Limnology and Oceanography 51 (1, part 2): 398-408. 2006.
125	Teversar. Tr Danish case study ". Ennitology and Oceanography 51 (1, part 2). 596–406. 2000.

526	Cesbron, F., E. Geslin, F. J. Jorissen, M. L. Delgard, L. Charrieau, B. Deflandre, D. Jézéquel, P. Anschutz,
527	and E. Metzger. « Vertical distribution and respiration rates of benthic foraminifera: Contribution
528	to aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows ». Estuarine,
529	Coastal and Shelf Science 179: 23-38. 2016.
530	Charrieau, L. M., H. L. Filipsson, K. Ljung, M. Chierici, K. L. Knudsen, and E. Kritzberg. « The effects
531	of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the
532	Skagerrak-Baltic Sea region ». Marine Micropaleontology 139
533	https://doi.org/10.1016/j.marmicro.2017.11.004. 2017.
534	Christiansen, C., H. Kunzendorf, M. J. C. Laima, L. C. Lund-Hansen, and A. M. Pedersen. « Recent
535	changes in environmental conditions in the southwestern Kattegat, Scandinavia ». NGU Bull., nº
536	430: 137-44. 1996.
537	Conley, D., J. Cartensen, G. Ærtebjerg, P. B. Christensen, T. Dalsgaard, J. L. S. Hansen, and A. B.
538	Josefson. « Long-term changes and impacts of hypoxia in Danish coastal waters ». Ecological
539	Applications 17 (5): S165-84. https://doi.org/10.1890/05-0766.1. 2007.
540	Conley, D. J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, BM. Haahti, et al. « Hypoxia
541	is increasing in the coastal zone of the Baltic Sea ». Environmental Science & Technology 45
542	(16): 6777-83. https://doi.org/10.1021/es201212r. 2011.
543	Conradsen, K., H. Bergsten, K.L. Knudsen, K. Nordberg, and MS. Seidenkrantz. « Recent benthic
544	foraminiferal distribution in the Kattegat and the Skagerrak, Scandinavia ». Cushman Foundation
545	Special Publication No.32, 53-68. 1994.
546	Cutshall, N. H., I. L. Larsen, and C. R. Olsen. « Direct analysis of ²¹⁰ Pb in sediment samples: Self-
547	absorption corrections ». Nuclear Instruments and Methods in Physics Research 206 (1): 309-12.
548	https://doi.org/10.1016/0167-5087(83)91273-5. 1983.
549	Daewel, U., and C. Schrum. « Simulating long-term dynamics of the coupled North Sea and Baltic Sea
550	ecosystem with ECOSMO II: Model Description and Validation ». Journal of Marine Systems
551	119-120: 30-49. https://doi.org/10.1016/j.jmarsys.2013.03.008. 2013.
552	
553	3-D coupled physical-biogeochemical model ECOSMO ». Earth System Dynamics 8: 801-15.
554	https://doi.org/10.5194/esd-8-801-2017. 2017.
555	Darling, K.F., M. Schweizer, K.L. Knudsen, K.M. Evans, C. Bird, A. Roberts, H.L. Filipsson, et al. « The
556	genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast
557	Atlantic ». Marine Micropaleontology. https://doi.org/10.1016/j.marmicro.2016.09.001. 2016.
558	Deldicq, N., E. Alve, M. Schweizer, I. Polovodova-Asteman, S. Hess, K. Darling and V.M.P. Bouchet. «
559	History of the introduction of a species resembling the benthic foraminifera Nonionella stella in
560	the Oslofjord (Norway): morphological, molecular and paleo-ecological evidences ». Aquatic
561	Invasions 14. In press.
562	Ellis, B. F., and A. R. Messina. Catalogue of Foraminifera. New York: Micropaleontology Press, The
563	American Museum of Natural History. 1940.
564	Erbs-Hansen, D.R., K.L. Knudsen, A.C. Gary, R. Gyllencreutz, and E. Jansen. « Holocene climatic
565	development in Skagerrak, Eastern North Atlantic: foraminiferal and stable isotopic evidence ».
566	The Holocene 22 (3): 301-12. https://doi.org/10.1177/0959683611423689. 2012.
567	Feyling-Hanssen, R. W. Foraminifera in Late Quaternary Deposits from the Oslofjord Area. Vol. Issue
568	225 of Skrifter (Norges geologiske undersøkelse). Universitetsforlaget. 1964.
569	Feyling-Hanssen, R. W., J. A. Jørgensen, K. L. Knudsen, et AL. L. Andersen. Late quaternary
570	foraminifera from Vendsyssel, Denmark and Sandnes, Norway. Vol. 21, 67-317. Issues 2-3 of
571	Bulletin of the Geological Society of Denmark. Dansk geologisk forening. 1971.
572	Feyling-Hanssen, R.W. « The Foraminifer Elphidium excavatum (Terquem) and its variant forms ».
573	Micropaleontology 18 (3): 337-54. https://doi.org/10.2307/1485012. 1972.

574 575	Filipsson, H.L., and K. Nordberg. « Climate variations, an overlooked factor influencing the recent marine environment. An example from Gullmar Fjord, Sweden, illustrated by Benthic
576	Foraminifera and Hydrographic Data ». Estuaries 27 (5): 867-81. 2004a.
577	
578	Foraminifera, Sediment Characteristics and Hydrographic Data ». The Journal of Foraminiferal
579	Research 34 (4): 277-93. https://doi.org/10.2113/34.4.277. 2004b.
580	Göransson, P. « Changes of benthic fauna in the Kattegat – An indication of climate change at mid-
581 582	latitudes? » Estuarine, Coastal and Shelf Science 194. https://doi.org/10.1016/j.ecss.2017.06.034. 2017.
583	Göransson, P., L. A. Angantyr, J. B. Hansen, G. Larsen, and F. Bjerre. « Öresunds bottenfauna ».
584	Öresundsvattensamarbetet. 2002.
585	Groeneveld, J., H. L. Filipsson, W.E.N. Austin, K. Darling, D. McCarthy, N.B.Q. Krupinski, C. Bird, and
586	M. Schweizer. « Assessing proxy signatures of temperature, salinity and hypoxia in the Baltic Sea
587	through foraminifera-based geochemistry and faunal assemblages ». Journal of
588	Micropalaeontology 37: 403-29. https://doi.org/10.5194/jm-37-403-2018. 2018.
589	Gustafsson, Bo G., Frederik Schenk, Thorsten Blenckner, Kari Eilola, H. E. Markus Meier, Bärbel
590	Müller-Karulis, Thomas Neumann, Tuija Ruoho-Airola, Oleg P. Savchuk, and Eduardo Zorita.
591	« Reconstructing the development of Baltic Sea eutrophication 1850–2006 ». Ambio 41 (6): 534-
592	48. https://doi.org/10.1007/s13280-012-0318-x. 2012.
593	Hammer, Ø., D.A.T. Harper, and P.D. Ryan. « PAST: Paleontological statistics software package for
594	education and data analysis. » Palaeontologia Electronica 4 ((1)): 9pp. 2001.
595	Hansen, H. J. « On the sedimentology and the quantitative distribution of living foraminifera in the
596	northern part of the Øresund ». Ophelia 2 (2): 323-31.
597	https://doi.org/10.1080/00785326.1965.10409608.1965.
598	HELCOM. « Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of
599 600	nutrient enrichment and eutrophication in the Baltic Sea region. » Balt. Sea Environ. Proc, nº 115B. 2009.
601	Henriksson, R. « The bottom fauna in polluted areas of the Sound ». Oikos 19 (1): 111-25.
602	https://doi.org/10.2307/3564736. 1968.
603	« Influence of pollution on the bottom fauna of the Sound (Öresund) ». Oikos 20 (2): 507-23.
604	https://doi.org/10.2307/3543212. 1969.
605	Hermelin, J.O.R. « Distribution of Holocene benthic foraminifera in the Baltic Sea ». The Journal of
606	Foraminiferal Research 17 (1): 62-73. https://doi.org/10.2113/gsjfr.17.1.62. 1987.
607	ICES. Integrated ecosystem assessments of seven Baltic Sea areas covering the last three decades.
608	International Council for the Exploration of the Sea, Cooperative Research Report No. 302. 2010.
609	Jarke, J. « Beobachtungen über Kalkauflösung an Schalen von Mikrofossilien in Sedimenten der
610	westlichen Ostsee ». Deutsche Hydrografische Zeitschrift 14 (1): 6-11.
611	https://doi.org/10.1007/BF02226819. 1961.
612	Jones, P. D., T. Jonsson, and D. Wheeler. « Extension to the North Atlantic oscillation using early
613	instrumental pressure observations from Gibraltar and South-west Iceland ». International Journal
614	of Climatology 17: 1433-50. https://doi.org/10.1002/(SICI)1097-
615	0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P. 1997.
616	Leppäranta, M., and K. Myrberg. Physical Oceanography of the Baltic Sea. Berlin, Heidelberg: Springer
617	Berlin Heidelberg. 2009.
618	Loeblich, A. R., and H. Tappan. « Part C, Protista 2, Sarcodina, Chiefly "Thecamoebians" and
619	Foraminiferida ». In Treatise on Invertebrate Paleontology, Moore, R.C., 900 pp. The Geological
620	Society of America and the University of Kansas. 1964.
621	Lumborg, U. « Modelling the deposition, erosion, and flux of cohesive sediment through Øresund ».
622	Journal of Marine Systems 56 (1): 179-93. https://doi.org/10.1016/j.jmarsys.2004.11.003. 2005.

623	Martin, R.E. « Taphonomy and Temporal Resolution of Foraminiferal Assemblages ». In Modern
624	Foraminifera, 281-98. Springer Netherlands. https://doi.org/10.1007/0-306-48104-9 16. 1999.
625	Murray, J. W. Ecology and applications of benthic foraminifera. Cambridge University Press. 2006.
626	Murray, J. W., and E. Alve. « The distribution of agglutinated foraminifera in NW European seas:
627	Baseline data for the interpretation of fossil assemblages ». Palaeontologia Electronica 14 (2):
628	14A: 41p. 2011.
629	Murray, John W., and Elisabeth Alve. « Taphonomic experiments on marginal marine foraminiferal
630	assemblages: how much ecological information is preserved? » Palaeogeography,
631	Palaeoclimatology, Palaeoecology 149 (1-4): 183-97. https://doi.org/10.1016/S0031-
632	0182(98)00200-4. 1999.
633	Nausch, G., D. Nehring, and G. Aertebjerg. « Anthropogenic nutrient load of the Baltic Sea ».
634	Limnologica - Ecology and Management of Inland Waters 29 (3): 233-41.
635	https://doi.org/10.1016/S0075-9511(99)80007-3. 1999.
636	Nielsen, M. H. « Evidence for internal hydraulic control in the northern Øresund ». Journal of
637	Geophysical Research 106 (C7): 14,055-14,068. https://doi.org/10.1029/2000JC900162. 2001.
638	Nordberg, K., M. Gustafsson, and AL. Krantz. « Decreasing oxygen concentrations in the Gullmar Fjord,
639	Sweden, as confirmed by benthic foraminifera, and the possible association with NAO ». Journal
640	of Marine Systems 23 (4): 303-16. https://doi.org/10.1016/S0924-7963(99)00067-6. 2000.
641	Otto, G.H. « Comparative tests of several methods of sampling heavy mineral concentrates ». Journal of
642	Sedimentary Research 3 (1): 30-39. 1933.
643	Piña-Ochoa, E., S. Høgslund, E. Geslin, T. Cedhagen, N.P. Revsbech, L.P. Nielsen, M. Schweizer, F.
644	Jorissen, S. Rysgaard, and N. Risgaard-Petersen. « Widespread occurrence of nitrate storage and
645	denitrification among Foraminifera and Gromiida ». Proceedings of the National Academy of
646	Science 107: 1148-53. https://doi.org/10.1073/pnas.0908440107. 2010.
647	Polovodova Asteman, I., D. Hanslik, and K. Nordberg. « An almost completed pollution-recovery cycle
648	reflected by sediment geochemistry and benthic foraminiferal assemblages in a Swedish-
649	Norwegian Skagerrak fjord ». Marine Pollution Bulletin 95 (1): 126-40.
650	https://doi.org/10.1016/j.marpolbul.2015.04.031. 2015.
651	Polovodova Asteman, I., and K. Nordberg. « Foraminiferal fauna from a deep basin in Gullmar Fjord:
652	The influence of seasonal hypoxia and North Atlantic Oscillation ». Journal of Sea Research 79:
653	40-49. https://doi.org/10.1016/j.seares.2013.02.001. 2013.
654	Polovodova Asteman, I., and J. Schönfeld. « Recent invasion of the foraminifer Nonionella stella
655	Cushman & Moyer, 1930 in northern European waters: Evidence from the Skagerrak and its
656	fjords ». Journal of Micropalaeontology 35 (1). https://doi.org/10.1144/jmpaleo2015-007. 2015.
657	Rosenberg, R., I. Cato, L. Förlin, K. Grip, and J. Rodhe. « Marine environment quality assessment of the
658	Skagerrak - Kattegat ». Journal of Sea Research 35 (1): 1-8. https://doi.org/10.1016/S1385-
659	1101(96)90730-3. 1996.
660	Rydberg, L., G. Ærtebjerg, and L. Edler. « Fifty years of primary production measurements in the Baltic
661	entrance region, trends and variability in relation to land-based input of nutrients ». Journal of Sea
662	Research 56 (1): 1-16. https://doi.org/10.1016/j.seares.2006.03.009. 2006.
663	Sayin, E., and W. Krauß. « A numerical study of the water exchange through the Danish Straits ». Tellus,
664	nº 48(2): 324-41. https://doi.org/10.1034/j.1600-0870.1996.t01-1-00009.x. 1996.
665	Schenk, F. « The analog-method as statistical upscaling tool for meteorological field reconstructions over
666	Northern Europe since 1850 ». Dissertation, University of Hamburg. http://ediss.sub.uni-
667	hamburg.de/volltexte/2015/7156/. 2015.
668	
669	Northern Europe since 1850 ». World Data Center for Climate (WDCC) at DKRZ.
670	https://doi.org/10.1594/WDCC/HiResAFF. 2017.

- Schenk, F., and E. Zorita. « Reconstruction of high resolution atmospheric fields for Northern Europe
 using analog-upscaling ». Climate of the Past 8: 1681-1703. https://doi.org/10.5194/cp-8-16812012. 2012.
 Seidenkrantz, Marit-Solveig. « Subrecent changes in the foraminiferal distribution in the Kattegat and the
- 674 Seidenkrantz, Marit-Solveig. « Subrecent changes in the foraminiferal distribution in the Kattegat and the
 675 Skagerrak, Scandinavia: Anthropogenic influence and natural causes ». Boreas 22 (4): 383-95.
 676 https://doi.org/10.1111/j.1502-3885.1993.tb00201.x. 1993.
- 677 Sen Gupta, B. K.. « Foraminifera in marginal marine environments ». In Modern Foraminifera, 141-59.
 678 Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9. 1999a
- 679 ——.Modern Foraminifera. Springer Science & Business Media. 1999b.
- She, Jun, Per Berg, and Jacob Berg. « Bathymetry impacts on water exchange modelling through the
 Danish Straits ». Journal of Marine Systems, Marine Environmental Monitoring and Prediction,
 65 (1): 450-59. https://doi.org/10.1016/j.jmarsys.2006.01.017. 2007.
- Tappan, H., and A. R. Loeblich. « Foraminiferal evolution, diversification, and extinction ». Journal of
 Paleontology 62 (5): 695-714. 1988.
- Wesslander, K., L. Andersson, P. Axe, J. Johansson, J. Linders, N. Nixelius, and A.-T. Skjevik. « SMHI
 Report: Swedish national report on eutrophication status in the Skagerrak, Kattegat and the
 Sound ». Report Oceanography No 54. 2016.
- Yanko, V., A. J. Arnold, and W. C. Parker. « Effects of marine pollution on benthic foraminifera ». In
 Modern Foraminifera, 217-35. Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_13.
 1999.

691

692 <u>Figures</u>

- Figure 1. Map of the studied area. The star shows the focused station of this study. General water
- 694 circulation: main surface currents (black arrows) and main deep currents (grey arrows). GB:
- 695 Great Belt; LB: Little Belt; AW: Atlantic Water; CNSW: Central North Sea Water; JCW; Jutland
- 696 Coastal Water; NCC: Norwegian Coastal Current; BW: Baltic Water. Insert source: <u>© BSHC</u>.
- Figure 2. CTD profiles of temperature, salinity, pH and dissolved oxygen concentration in the
- water column for the DV-1 station (modified from Charrieau et al. 2018).
- 699 Figure 3. Seasonal variability of salinity, temperature, pH and dissolved inorganic nitrogen
- 700 (DIN) concentration at the surface water (light grey), and seasonal variability of salinity,
- temperature, pH and dissolved oxygen concentration at the bottom water (40-50 m) (dark grey)
- of the Öresund. The data were measured between 1965 and 2016 by the SMHI (Swedish

703 Meteorological and Hydrological Institute) at the station W LANDSKRONA. The number of

- Figure 4. Age-depth calibration for the sediment sequence from the Öresund (DV-1). A) Total
- and supported ²¹⁰Pb activity. B) Unsupported ²¹⁰Pb activity and the associated age-model. C)
- ¹³⁷Cs activity. The peak corresponds to the Chernobyl reactor accident in 1986. D) Age-depth
- model for the whole sediment sequence based on ²¹⁰Pb dates and calculated sediment
- 709 accumulation rates (SAR).
- Figure 5. A) Relative abundances (%) of the foraminiferal major species (>5 %), benthic
- 711 foraminiferal accumulation rate (BFAR, specimens.cm⁻².yr⁻¹), Shannon index, organic linings
- $(\text{specimens.cm}^{-2}.\text{yr}^{-1})$ and factors from the correspondence analysis. B) Benthic foraminiferal
- accumulation rates (specimens.cm⁻².yr⁻¹) of the major species (>5%), BFAR (specimens.cm⁻².yr⁻¹)
- ¹), Shannon index, organic linings (specimens.cm⁻².yr⁻¹) and factors from the correspondence
- analysis. Foraminiferal zones based on cluster analysis. Note the different scale on the x axes.
- Figure 6. Dendrogram produced by the cluster analysis based on the Morisita index and the
- 717 UPGMA clustering method.
- Figure 7. Sediment parameters of the cores DV-1I and DV-1G (²¹⁰Pb dated): total organic carbon
- content (C_{org}) (%), C/N ratio, and grain size (%). For a miniferal zones indicated.
- Figure 8. South-North flow (VAV) in the Öresund (dark line) and West-East flow (UAV) in the
- 721 Kattegat (light line) between 1950 and 2013. Foraminiferal zones indicated.
- Figure 9. A) NAO index for boreal winter (December to March), data from Jones et al. (1997).
- B) Variations of near-surface (10 m) wind conditions (October to March), data from Schenk and

- 724 Zorita (2012). Both NAO index and wind speed data are normalized on the period 1850-2008
- 725 and show running decadal means. C) BFAR, percentage of sand fraction and West-East flow
- 726 (UAV) in the Kattegat. Foraminiferal zones indicated.
- Plate 1. SEM pictures of the major foraminiferal species (>5%). 1. *Stainforthia fusiformis*; 2.
- 728 Nonionellina labradorica; 3. Nonionella sp. T1; 4. Nonionoides turgida; 5. Eggerelloides
- 729 medius/scabrus; 6. Bulimina marginata; 7. Ammonia batava; 8. Reophax subfusiformis; 9.
- 730 *Elphidium magellanicum*; 10. *Elphidium clavatum*; 11-12. *Ammonia* sp.
- 731 <u>Tables</u>
- 732 Table 1. Significant foraminiferal species and scores according to the correspondence analysis.
- 733 Table 2. Ecological significance of the benthic foraminiferal assemblages (major species).
- 734 Appendix
- Appendix A. Time series of salinity, temperature and dissolved oxygen concentration at the
- bottom water (40 m) of the Öresund between 1986 and 2013. The data were measured by the
- 737 SMHI (Swedish Meteorological and Hydrological Institute) at the station W LANDSKRONA.
- 738 Appendix B. Total faunas, normalized to 50 cm³
- 739
- 740
- 741
- 742

Figure 1. Map of the studied area. The star shows the focused station of this study. General watercirculation: main surface currents (black arrows) and main deep currents (grey arrows). GB:

757 Great Belt; LB: Little Belt; AW: Atlantic Water; CNSW: Central North Sea Water; JCW; Jutland

758 Coastal Water; NCC: Norwegian Coastal Current; BW: Baltic Water. Insert source: <u>© BSHC</u>.

759

Figure 2. CTD profiles of temperature, salinity, pH and dissolved oxygen concentration in the
water column for the DV-1 station (modified from Charrieau et al. 2018).

Figure 3. Seasonal variability of salinity, temperature, pH and dissolved inorganic nitrogen
(DIN) concentration at the surface water (light grey), and seasonal variability of salinity,
temperature, pH and dissolved oxygen concentration at the bottom water (40-50 m) (dark grey)
of the Öresund. The data were measured between 1965 and 2016 by the SMHI (Swedish
Meteorological and Hydrological Institute) at the station W LANDSKRONA. The number of
measurements is indicated for each month.

Figure 4. Age-depth calibration for the sediment sequence from the Öresund (DV-1). A) Total
and supported ²¹⁰Pb activity. B) Unsupported ²¹⁰Pb activity and the associated age-model. C)
¹³⁷Cs activity. The peak corresponds to the Chernobyl reactor accident in 1986. D) Age-depth
model for the whole sediment sequence based on ²¹⁰Pb dates and calculated sediment
accumulation rates (SAR).

Figure 5. A) Relative abundances (%) of the foraminiferal major species (>5 %), benthic

foraminiferal accumulation rate (BFAR, specimens.cm⁻².yr⁻¹), Shannon index, organic linings
(specimens.cm⁻².yr⁻¹) and factors from the correspondence analysis. B) Benthic foraminiferal
accumulation rates (specimens.cm⁻².yr⁻¹) of the major species (>5%), BFAR (specimens.cm⁻².yr⁻¹), Shannon index, organic linings (specimens.cm⁻².yr⁻¹) and factors from the correspondence
analysis. Foraminiferal zones based on cluster analysis. Note the different scale on the x axes.

Figure 6. Dendrogram produced by the cluster analysis based on the Morisita index and the

852 UPGMA clustering method.

Figure 7. Sediment parameters of the cores DV-1I and DV-1G (210 Pb dated): total organic carbon content (C_{org}) (%), C/N ratio, and grain size (%). Foraminiferal zones indicated.

869

870

881 Kattegat (light line) between 1950 and 2013. Foraminiferal zones indicated.

Figure 9. A) NAO index for boreal winter (December to March), data from Jones et al. (1997).
B) Variations of near-surface (10 m) wind conditions (October to March), data from Schenk and
Zorita (2012). Both NAO index and wind speed data are normalized on the period 1850-2008
and show running decadal means. C) BFAR, percentage of sand fraction and West-East flow
(UAV) in the Kattegat. Foraminiferal zones indicated.

Plate 1. SEM pictures of the major foraminiferal species (>5%). 1. Stainforthia fusiformis; 2.
Nonionellina labradorica; 3. Nonionella sp. T1; 4. Nonionoides turgida; 5. Eggerelloides
medius/scabrus; 6. Bulimina marginata; 7. Ammonia batava; 8. Reophax subfusiformis; 9.
Elphidium magellanicum; 10. Elphidium clavatum; 11-12. Ammonia sp.

	Factor	Total variance (%)	Significant species	Score
	1	48.18	<i>Nonionella</i> sp. T1	5.10
			Nonionoides turgida	4.14
	2	30.88	Ammonia batava	1.34
			Stainforthia fusiformis	-1.41
	3	13.36	Elphidium albiumbilicatum	-1.65
			Elphidium clavatum	-1.57
022			Elphidium magellanicum	-1.32
933				
934				
954				
935				
936				
937				
938				
550				
939				
940				
941				
941				
942				
943				
944				
945				
545				
946				

Table 1. Significant foraminiferal species and scores according to the correspondence analysis.

947 Table 2. Ecological significance of the benthic foraminiferal assemblages (major species).

	Species	Ecological significance	Reference
	Ammonia batava	Salinity 15-35, T 0-29°C, high tolerance to varying substrate	Alve and Murray (1999); Murray (2006)
		and TOC	
	Bulimina marginata	Tolerates low oxygen conditions, salinity 30-35, T 5-13 ^o C, muddy sand, prefers organic rich substrates	Conradsen (1993); Murray (2006)
	Elphidium albiumbilicatum	Salinity 16-26, typical brackish species	Alve and Murray (1999)
	Elphidium clavatum	Tolerates low oxygen conditions, salinity 10-35, T 0-7 ^o C, high	Conradsen {Citation}(1993); Alve and
	1	tolerance to varying substrate and TOC, subtidal	Murray (1999); Murray (2006)
	Elphidium magellanicum	Coastal species	Sen Gupta (1999)
	Nonionella stella/aff. stella	Tolerates low oxygen conditions, kleptoplastidy, able of	Piña-Ochoa et al. (2010); Bernhard et al.
		denitrification, invasive in the Skagerrak-Kattegat	(2012); Charrieau et al. (2018)
	Nonionellina labradorica	Salinity >30, T 4-14 ^o C, high latitudes, kleptoplastidy, able of	Cedhagen (1991)
	Nonionoides turgida	denitrification Opportunistic species, tolerates low oxygen conditions, prefers	Van der Zwaan and Jorissen (1991)
	Nonionolides lurgidu	high food availability	van der Zwaan and jonssen (1991)
	Stainforthia fusiformis	Opportunistic species, tolerates very low oxygen conditions,	Alve (1994); Filipsson and Nordberg
		salinity >30, able of denitrification, prefers organic rich	(2004); Piña-Ochoa et al. (2010)
		substrates, fast reproduction cycle	
	Eggerelloides medius/scabrus	High tolerance to hypoxia, salinity 20-35, T 8-14°C, sandy-	Alve and Murray (1999); Alve (1990);
	D 1 10 0 0	muddy sand, tolerance to various kind of pollution	Murray (2006); Cesbron et al. (2016)
٥	Reophax subfusiformis 48	Tolerance to environmental variations	Sen Gupta (1999)
9	40		
9	49		
-	-		
9	50		
_			
9	51		
٥	52		
9	JZ		
9	53		
9	54		
~			
9	55		
q	56		
5	~~		
9	57		

- 979
- 980

Appendix B. Total faunas, normalized to 50 cm³

Station name	DV																					
FOR zones	FOF	R-C	F	OR-B2	2	FOR-B1									FOR	FOR-A1						
Centimeter	1	2	4	5	6	8	10	12	14	15	16	17	18	20	22	24	26	28	30	32	34	36
Species																						
Biloculinella inflata	6	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cornuspira involvens	0	6	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0
Pyrgo williamsoni	1	1	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	28	0	0	0	0
Quinqueloculina seminula	0	1	0	0	35	0	14	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0
Quinqueloculina stalkeri	6	0	9	0	18	0	0	0	0	0	0	0	0	0	0	0	7	14	0	0	0	0
Porcelaneous varia	13	31	111	32	0	0	0	0	34	8	46	0	0	8	0	0	0	0	7	9	0	0
Organic linings	0	0	146	159	158	60	345	132	171	238	304	332	686	575	599	807	444	260	608	316	649	159
Ammonia beccarii	0	0	292	191	308	105	159	822	1495	2167	1033	498	123	121	15	16	14	49	57	103	56	25
Ammonia falsobeccarii	57	77	69	80	35	37	111	350	854	986	516	231	85	23	15	0	0	0	0	0	0	0
Ammonia spp.	0	0	0	0	0	142	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolivina pseudoplicata	0	0	9	0	0	0	0	0	68	0	0	0	0	0	0	0	0	0	0	0	0	2
Bolivina pseudopunctata	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolivina spp.	0	0	9	0	0	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bulimina marginata	132	107	506	414	282	187	166	661	1128	1224	501	534	116	68	29	16	57	7	0	0	8	6
Buliminella elegantissima	0	6	206	143	176	60	83	57	103	170	61	29	8	8	7	8	0	70	7	9	0	0
Cassidulina laevigata	44	101	300	112	35	22	0	340	376	510	228	116	15	8	7	0	0	0	0	0	0	2
Cassidulina reniforme	0	13	17	32	0	15	14	19	68	0	15	14	0	0	0	0	0	0	0	0	0	0
Cibicides lobatulus	63	57	352	287	211	22	41	359	410	238	273	130	8	8	0	16	0	7	14	43	8	8
Elphidium albiumbilicatum	25	63	489	143	528	225	180	454	410	238	213	217	77	53	15	31	29	127	78	77	0	14
Elphidium clavatum	201	289	986	1833	2077	809	567	1436	2631	3331	1018	1430	154	136	51	39	100	183	155	111	72	45
Elphidium magellanicum	63	94	292	223	528	135	180	529	547	408	349	130	62	45	0	0	43	141	92	60	8	8
Elphidium williamsoni	19	19	86	32	18	22	14	113	68	136	61	14	0	0	0	0	7	28	21	51	16	6
Elphidium spp.	69	126	86	0	53	0	28	0	0	0	0	0	0	15	0	0	21	7	14	17	8	2
Epistominella vitrea	19	13	309	367	299	120	166	227	103	204	30	43	23	0	7	0	7	0	0	0	0	0
Fissurina spp.	0	0	0	0	0	0	0	0	34	0	15	0	0	0	0	0	0	0	0	0	0	0
Parafissurina spp.	0	0	43	16	35	22	0	38	34	68	15	14	8	0	0	0	0	7	0	0	0	0
Fursenkoïna spp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0
Gavelinopsis praegeri	0	6	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0
Giroidina sp.	0	0	0	0	0	0	0	0	34	0	0	0	0	0	0	0	0	0	0	0	0	0
Haynesina depressula	25	25	51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0
Hyalinea balthica	0	19	9	0	0	7	0	0	34	0	0	0	0	0	0	0	0	0	0	0	0	0
Lagena laevis	0	0	0	0	0	7	0	0	0	0	15	0	0	0	7	0	7	14	0	0	0	0

Appendix B. Total faunas, normalized to 50 cm³

Lagene substratiation O						ام										_			ام				
Langena suicata 10 0 9 0 18 0 0 10	Lagena semistriata	0	0	0	0	18	0	0	0	0	0	0	0	0	8	7	0	0	0	0	0	0	0
Lenticulina sp. Low Vol	0												-								-		-
Loxostomum sp. 0 <	v												-										
Nonionella sp. T1 308 178 94 0 18 22 0 38 0 0 <td>·</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td>	·	-	-	-		-	-	-					-	-				-	-	-	-		
Nonionella iridea 0 0 18 18 22 0 38 0			-	-	-	-							•			-		-	-	-	-		
Nonionellina labradorica 113 75 249 143 141 135 97 340 513 382 243 188 54 23 22 16 29 56 100 103 40 12 Nonionella spp. 0 0 17 0 0 0 17 0 0 17 0 0 0 18 0					-	-							-	-		-		-	-	-	-	-	
Nonionoides turgida 138 189 103 64 106 0 34 34 35 0 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ů</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>				-		-							ů	-		-				-	-		
Nonionella spp. 0 0 10																				106			
Nonionellina spp. 0 <	•	138					0					15	0	0		0	0	0	7	0	0	0	
Colina melo 6 0 0 0 0 0 0 6 0 <th< td=""><td></td><td>0</td><td>0</td><td>0</td><td>16</td><td>35</td><td>0</td><td>-</td><td>19</td><td></td><td>0</td><td>0</td><td>0</td><td>8</td><td>0</td><td>0</td><td>0</td><td>0</td><td>7</td><td>0</td><td>0</td><td>0</td><td></td></th<>		0	0	0	16	35	0	-	19		0	0	0	8	0	0	0	0	7	0	0	0	
Polymorphina spp. 0 0 9 16 0 0 38 0 0 15 0	Nonionellina spp.	0	0	17	0	0	0	0	19	34	0	0	0	0	0	0	0	0	0	0	0	0	2
Procendagena clavata 0 6 0		6	0	0	0	0	0	0	19	0	68	0	0	0	0	0	0	0	0	0	0	0	0
Procenolagena grassilima 0 v 1 0 1 1 0 <td>Polymorphina spp.</td> <td>0</td> <td>0</td> <td>9</td> <td>16</td> <td>0</td> <td>0</td> <td>0</td> <td>38</td> <td>0</td> <td>0</td> <td>15</td> <td>0</td> <td>0</td> <td>15</td> <td>0</td> <td>0</td> <td>7</td> <td>0</td> <td>7</td> <td>9</td> <td>0</td> <td>0</td>	Polymorphina spp.	0	0	9	16	0	0	0	38	0	0	15	0	0	15	0	0	7	0	7	9	0	0
Procensisting analitis 0 1 0	Procerolagena clavata	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Robertina arctica 0 6 0 <	Procerolagena grassilima	0	0	43	0	18	15	0	0	0	0	30	14	8	23	7	0	0	0	0	9	0	0
Rosalina spp.003200<	Procerolagena mollis	0	0	17	0	0	0	0	0	0	0	0	0	8	8	0	0	0	0	7	0	0	0
Stainforthia fusiformis 126 119 746 669 827 277 373 340 547 306 258 838 1025 2029 402 541 1096 2112 1144 427 304 161 Stainforthia loeblichi 0 0 17 16 0 <t< td=""><td>Robertina arctica</td><td>0</td><td>6</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Robertina arctica	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stainforthia loeblichi 0 0 17 16 0 </td <td>Rosalina spp.</td> <td>0</td> <td>0</td> <td>0</td> <td>32</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>102</td> <td>0</td>	Rosalina spp.	0	0	0	32	0	0	0	0	0	102	0	0	0	0	0	0	0	0	0	0	0	0
Hyalin indet (round)000	Stainforthia fusiformis	126	119	746	669	827	277	373	340	547	306	258	838	1025	2029	402	541	1096	2112	1144	427	304	161
Hyalin indet (twisted)0170180038034300800 <td>Stainforthia loeblichi</td> <td>0</td> <td>0</td> <td>17</td> <td>16</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>0</td> <td>8</td> <td>7</td> <td>0</td> <td>7</td> <td>0</td> <td>16</td> <td>0</td>	Stainforthia loeblichi	0	0	17	16	0	0	0	0	0	0	0	0	8	0	0	8	7	0	7	0	16	0
Hyalin varia60000000034000 <t< td=""><td>Hyalin indet (round)</td><td>0</td><td>0</td><td>9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>68</td><td>68</td><td>15</td><td>14</td><td>15</td><td>0</td><td>0</td><td>0</td><td>7</td><td>14</td><td>14</td><td>0</td><td>0</td><td>2</td></t<>	Hyalin indet (round)	0	0	9	0	0	0	0	0	68	68	15	14	15	0	0	0	7	14	14	0	0	2
Adercotryma glomerata 13 44 206 127 35 0 14 0 0 0 0 15 0 <	Hyalin indet (twisted)	0	0	17	0	18	0	0	38	0	34	30	0	8	0	0	0	0	0	0	0	0	0
Ammodiscus sp. 0 0 9 32 18 0	Hyalin varia	6	0	0	0	0	0	0	0	0	34	0	0	0	0	0	0	0	0	0	0	0	2
Ammoscalaria pseudospiralis 6 0 51 8 53 22 41 189 589 484 319 65 8 8 15 0 0 0 14 9 0 0 Ammotium cassis 1 0 0 80 18 0	Adercotryma glomerata	13	44	206	127	35	0	14	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0
Ammotium cassis 1 0 80 18 0	Ammodiscus sp.	0	0	9	32	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Cribrostomoides crassimargo 0 0 17 16 106 30 28 0	Ammoscalaria pseudospiralis	6	0	51	8	53	22	41	189	589	484	319	65	8	8	15	0	0	0	14	9	0	0
Cribrostomoides subglobosum 0 2 0 0 0 0 10 10 10 <	Ammotium cassis	1	0	0	80	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cribrostomoides spp. 0 0 206 207 317 45 69 19 103 170 46 116 62 38 44 16 21 28 14 26 16 2 Recurvoides spp. 57 44 0 0 53 0 28 432 7756 9279 5696 3769 1125 712 920 470 516 514 1349 1325 793 223 Haplophragmoides bradyi 6 0<	Cribrostomoides crassimargo	0	0	17	16	106	30	28	0	0	0	0	0	0	0	0	0	0	14	0	9	0	2
Recurvoides spp. 57 44 0 0 53 0 28 0	Cribrostomoides subglobosum	0	2	0	0	0	0	0	19	0	0	0	0	0	0	0	0	7	0	0	0	0	0
Eggere/loides medius/scabrus 189 170 1055 1115 986 847 1133 4327 7756 9279 5696 3769 1125 712 920 470 516 514 1349 1325 793 223 Haplophragmoides bradyi 6 0 <td>Cribrostomoides spp.</td> <td>0</td> <td>0</td> <td>206</td> <td>207</td> <td>317</td> <td>45</td> <td>69</td> <td>19</td> <td>103</td> <td>170</td> <td>46</td> <td>116</td> <td>62</td> <td>38</td> <td>44</td> <td>16</td> <td>21</td> <td>28</td> <td>14</td> <td>26</td> <td>16</td> <td>2</td>	Cribrostomoides spp.	0	0	206	207	317	45	69	19	103	170	46	116	62	38	44	16	21	28	14	26	16	2
Haplophragmoides bradyi 6 0 <td>Recurvoides spp.</td> <td>57</td> <td>44</td> <td>0</td> <td>0</td> <td>53</td> <td>0</td> <td>28</td> <td>0</td>	Recurvoides spp.	57	44	0	0	53	0	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lagenammina difflugiformis 25 6 26 0 70 0 0 26 0 76 0 0 7 8 7 14 0 17 0 8 Leptohalysis scotti 63 25 0	Eggerelloides medius/scabrus	189	170	1055	1115	986	847	1133	4327	7756	9279	5696	3769	1125	712	920	470	516	514	1349	1325	793	223
Leptohalysis scotti 63 25 0	Haplophragmoides bradyi	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Lagenammina difflugiformis	25	6	26	0	70	0	0	0	26	0	76	0	0	0	7	8	7	14	0	17	0	8
Miliammina fusca 0 0 26 32 0 7 0 19 0 102 0 0 0 23 0 0 7 21 7 9 0 2	Leptohalysis scotti	63	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Miliammina fusca	0	0	26	32	0	7	0	19	0	102	0	0	0	23	0	0	7	21	7	9	0	2

Appendix B. Total faunas, norma	lized to 50 cm ³

Paratrochammina haynesi	0	0	0	0	0	0	0	0	0	102	0	14	0	0	0	0	0	0	0	0	0	0
Psammosphaera bowmanni	6	0	0	0	18	0	14	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
Reophax subfusiformis	285	181	583	430	722	127	207	557	1102	1198	440	173	139	106	153	39	29	56	92	60	32	27
Reophax spp.	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spiroplectammina biformis	19	50	343	207	282	30	138	0	0	0	0	0	62	83	22	47	43	42	35	0	0	20
Textularia earlandi	57	0	60	0	88	0	0	0	0	0	0	0	0	8	0	0	0	7	0	0	0	0
Textularia kattegatensis	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textularia spp.	0	0	26	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rotaliammina adaperta	0	0	0	32	53	22	41	0	34	68	46	14	8	23	15	0	29	21	21	9	8	12
Trochammina spp.	0	0	0	0	53	0	28	19	0	102	46	29	8	0	0	24	0	21	0	9	0	0
Agglutinated varia	6	19	137	0	0	0	0	76	0	0	0	0	100	114	139	78	136	77	92	0	104	31
TOTAL	2192	2198	8472	7418	8933	3620	4304	11725	19544	22561	12015	8968	4045	4308	2511	2187	2694	4013	3963	2854	2147	788